
Developers’ Manual Version 2.1.0
November 18, 2016

PARALLEL MULTIGRID IN TIME

BRAIDBRAID

V. A. Dobrev, R. D. Falgout, Tz. V. Kolev, N. A. Petersson, J. B. Schroder, U. M. Yang
Center for Applied Scientific Computing (CASC)
Lawrence Livermore National Laboratory

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344. LLNL-SM-660398

ii

Copyright (c) 2013, Lawrence Livermore National Security, LLC. Produced at the Lawrence Livermore National Labo-
ratory. Written by the XBraid team. LLNL-CODE-660355. All rights reserved.

This file is part of XBraid. Please see the COPYRIGHT and LICENSE file for the copyright notice, disclaimer,
and the GNU Lesser General Public License. Email xbraid-support@llnl.gov for support.

XBraid is free software; you can redistribute it and/or modify it under the terms of the GNU General Public Li-
cense (as published by the Free Software Foundation) version 2.1 dated February 1999.

XBraid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the IMPLIED
WARRANTY OF MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and conditions of
the GNU General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 1307 USA

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

CONTENTS iii

Contents

1 Abstract 1

2 Introduction 2

2.1 Meaning of the name . 2

2.2 Advice to users . 2

2.3 Overview of the XBraid Algorithm . 2

2.3.1 Two-Grid Algorithm . 7

2.3.2 Summary . 7

2.4 Overview of the XBraid Code . 8

2.4.1 Parallel decomposition and memory . 8

2.4.2 Cycling and relaxation strategies . 9

2.4.3 Overlapping communication and computation . 10

2.4.4 Configuring the XBraid Hierarchy . 10

2.4.5 Halting tolerance . 11

2.4.6 Debugging XBraid . 12

2.5 Citing XBraid . 12

2.6 Summary . 13

3 Examples 13

3.1 The Simplest Example . 13

3.2 Some Advanced Features . 17

3.3 Simplest example expanded . 19

3.4 One-Dimensional Heat Equation . 20

3.5 Two-Dimensional Heat Equation . 20

3.5.1 Scaling Study with this Example . 24

4 Building XBraid 26

5 Examples: compiling and running 26

6 Coding Style 27

7 Using Doxygen 27

8 Regression Testing 28

9 Drivers: compiling and running 32

10 Module Index 33

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

iv CONTENTS

10.1 Modules . 33

11 Data Structure Index 34

11.1 Data Structures . 34

12 File Index 34

12.1 File List . 34

13 Module Documentation 34

13.1 Fortran 90 interface options . 34

13.1.1 Detailed Description . 35

13.1.2 Macro Definition Documentation . 35

13.2 Error Codes . 36

13.2.1 Detailed Description . 36

13.2.2 Macro Definition Documentation . 36

13.3 User-written routines . 37

13.3.1 Detailed Description . 37

13.3.2 Typedef Documentation . 37

13.4 User interface routines . 40

13.4.1 Detailed Description . 40

13.5 General Interface routines . 41

13.5.1 Detailed Description . 42

13.5.2 Typedef Documentation . 42

13.5.3 Function Documentation . 42

13.6 XBraid status structures . 50

13.6.1 Detailed Description . 50

13.6.2 Typedef Documentation . 50

13.7 XBraid status routines . 51

13.7.1 Detailed Description . 51

13.7.2 Function Documentation . 51

13.8 Inherited XBraid status routines . 58

13.8.1 Detailed Description . 58

13.8.2 Function Documentation . 59

13.9 XBraid status macros . 61

13.9.1 Detailed Description . 61

13.9.2 Macro Definition Documentation . 61

13.10XBraid test routines . 62

13.10.1 Detailed Description . 62

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

CONTENTS 1

13.10.2 Function Documentation . 62

14 Data Structure Documentation 67

14.1 _braid_CommHandle Struct Reference . 67

14.1.1 Detailed Description . 67

14.1.2 Field Documentation . 67

14.2 _braid_Core Struct Reference . 67

14.2.1 Detailed Description . 69

14.2.2 Field Documentation . 69

14.3 _braid_Grid Struct Reference . 75

14.3.1 Detailed Description . 75

14.3.2 Field Documentation . 76

15 File Documentation 77

15.1 _braid.h File Reference . 77

15.1.1 Detailed Description . 79

15.1.2 Macro Definition Documentation . 79

15.1.3 Function Documentation . 80

15.1.4 Variable Documentation . 84

15.2 braid.h File Reference . 84

15.2.1 Detailed Description . 86

15.3 braid_defs.h File Reference . 86

15.3.1 Detailed Description . 87

15.3.2 Macro Definition Documentation . 87

15.3.3 Typedef Documentation . 87

15.3.4 Function Documentation . 88

15.3.5 Variable Documentation . 88

15.4 braid_status.h File Reference . 88

15.4.1 Detailed Description . 90

15.4.2 Macro Definition Documentation . 90

15.5 braid_test.h File Reference . 90

15.5.1 Detailed Description . 91

Index 92

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

2 CONTENTS

1 Abstract

This package implements an optimal-scaling multigrid solver for the (non)linear systems that arise from the discretization
of problems with evolutionary behavior. Typically, solution algorithms for evolution equations are based on a time-
marching approach, solving sequentially for one time step after the other. Parallelism in these traditional time-integration
techniques is limited to spatial parallelism. However, current trends in computer architectures are leading towards
systems with more, but not faster, processors, i.e., clock speeds are stagnate. Therefore, faster overall runtimes must
come from greater parallelism. One approach to achieve parallelism in time is with multigrid, but extending classical
multigrid methods for elliptic operators to this setting is a significant achievement. In this software, we implement a non-
intrusive, optimal-scaling time-parallel method based on multigrid reduction techniques. The examples in the package
demonstrate optimality of our multigrid-reduction-in-time algorithm (MGRIT) for solving a variety of equations in two and
three spatial dimensions. These examples can also be used to show that MGRIT can achieve significant speedup in
comparison to sequential time marching on modern architectures.

It is strongly recommended that you also read Parallel Time Integration with Multigrid after
reading the Overview of the XBraid Algorithm. It is a more in depth discussion of the algorithm and associated ex-
periments.

2 Introduction

2.1 Meaning of the name

We chose the package name XBraid to stand for Time-Braid, where X is the first letter in the Greek word for time,
Chronos. The algorithm braids together time-grids of different granularity in order to create a multigrid method and
achieve parallelism in the time dimension.

2.2 Advice to users

The field of parallel-in-time methods is in many ways under development, and success has been shown primarily for
problems with some parabolic character. While there are ongoing projects (here and elsewhere) looking at varied
applications such as hyperbolic problems, computational fluid dynamics, power grids, medical applications, and so on,
expectations should take this fact into account. Please see our project publications website for our recent
publications concerning some of these varied applications.

That being said, we strongly encourage new users to try our code for their application. Every new application has its
own issues to address and this will help us to improve both the algorithm and the software.

For support, please email xbraid-support@llnl.gov. This email address automically interfaces with our issue
tracker and notifies all developers of the pending support request.

2.3 Overview of the XBraid Algorithm

The goal of XBraid is to solve a problem faster than a traditional time marching algorithm. Instead of sequential time
marching, XBraid solves the problem iteratively by simultaneously updating a space-time solution guess over all time
values. The initial solution guess can be anything, even a random function over space-time. The iterative updates to
the solution guess are done by constructing a hierarchy of temporal grids, where the finest grid contains all of the time
values for the simulation. Each subsequent grid is a coarser grid with fewer time values. The coarsest grid has a trivial
number of time steps and can be quickly solved exactly. The effect is that solutions to the time marching problem on the
coarser (i.e., cheaper) grids can be used to correct the original finest grid solution. Analogous to spatial multigrid, the
coarse grid correction only corrects and accelerates convergence to the finest grid solution. The coarse grid does not
need to represent an accurate time discretization in its own right. Thus, a problem with many time steps (thousands,

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

https://computation.llnl.gov/project/linear_solvers/pubs/mgritPaper-2014.pdf
http://computation.llnl.gov/projects/parallel-time-integration-multigrid/publications

2.3 Overview of the XBraid Algorithm 3

tens of thousands or more) can be solved with 10 or 15 XBraid iterations, and the overall time to solution can be greatly
sped up. However, this is achieved at the cost of more computational resources.

To understand how XBraid differs from traditional time marching, consider the simple linear advection equation, ut =
−cux. The next figure depicts how one would typically evolve a solution here with sequential time stepping. The initial
condition is a wave, and this wave propagates sequentially across space as time increases.

Lawrence Livermore National Laboratory Internal Distribution Only

Parallel-in-Time Project Overview

1

1 sequential time step

Ti
m

e

Space

ut = �cux

!  Issue: sequential time integration bottleneck, new parallelism needed
•  Future performance gains will come through more concurrency

!  Project goal: parallelize time stepping with a scalable multigrid method

Lawrence Livermore National Laboratory Internal Distribution Only

Parallel-in-Time Project Overview

1

340 sequential time steps

Ti
m

e

Space

ut = �cux

!  Issue: sequential time integration bottleneck, new parallelism needed
•  Future performance gains will come through more concurrency

!  Project goal: parallelize time stepping with a scalable multigrid method

Lawrence Livermore National Laboratory Internal Distribution Only

Parallel-in-Time Project Overview

1

680 sequential time steps

Ti
m

e

Space

ut = �cux

!  Issue: sequential time integration bottleneck, new parallelism needed
•  Future performance gains will come through more concurrency

!  Project goal: parallelize time stepping with a scalable multigrid method

Lawrence Livermore National Laboratory Internal Distribution Only

Parallel-in-Time Project Overview

1

!  Issue: sequential time integration bottleneck, new parallelism needed
•  Future performance gains will come through more concurrency

!  Project goal: parallelize time stepping with a scalable multigrid method

1024 sequential time steps
Ti

m
e

Space

ut = �cux

Figure 1: Sequential time stepping.

XBraid instead begins with a solution guess over all of space-time, which for demonstration, we let be random. An
XBraid iteration does

1. Relaxation on the fine grid, i.e., the grid that contains all of the desired time values. Relaxation is just a local
application of the time stepping scheme, e.g., backward Euler.

2. Restriction to the first coarse grid, i.e., interpolate the problem to a grid that contains fewer time values, say every
second or every third time value.

3. Relaxation on the first coarse grid

4. Restriction to the second coarse grid and so on...

5. When a coarse grid of trivial size (say 2 time steps) is reached, it is solved exactly.

6. The solution is then interpolated from the coarsest grid to the finest grid

One XBraid iteration is called a cycle and these cycles continue until the solution is accurate enough. This is depicted
in the next figure, where only a few iterations are required for this simple problem.

restric'on!

prolonga'on.
(interpola+on)!

Itera&on)0!

Relaxa'on.on.fine.'me.grid.

Ti
m
e!

Space!

Relaxa'on.on.
first.coarse.grid.

Note:.
smaller.grid.
with.fewer.
'me.values.

ut = �cux

Itera&on)1!

Relaxa'on.on.fine.'me.grid.

Ti
m
e!

Space!

Relaxa'on.on.
first.coarse.grid.

ut = �cux

!!

restric'on!

prolonga'on.
(interpola+on)!

Itera&on)2!

Relaxa'on.on.fine.'me.grid.

Ti
m
e!

Space!

Relaxa'on.on.
first.coarse.grid.

Note:.
smaller.grid.
with.fewer.
'me.values.

ut = �cux

restric'on!

prolonga'on.
(interpola+on)!

Note:.
smaller.grid.
with.fewer.
'me.values.

Figure 2: XBraid iterations.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

4 CONTENTS

There are a few important points to make.

• The coarse time grids allow for global propagation of information across space-time with only one XBraid iteration.
This is visible in the above figure by observing how the solution is updated from iteration 0 to iteration 1.

• Using coarser (cheaper) grids to correct the fine grid is analogous to spatial multigrid.

• Only a few XBraid iterations are required to find the solution over 1024 time steps. Therefore if enough processors
are available to parallelize XBraid, we can see a speedup over traditional time stepping (more on this later).

• This is a simple example, with evenly space time steps. XBraid is structured to handle variable time step sizes
and adaptive time step sizes.

To firm up our understanding, let‘s do a little math. Assume that you have a general system of ordinary differential
equations (ODEs),

u′(t) = f (t,u(t)), u(0) = u0, t ∈ [0,T].

Next, let ti = iδ t, i = 0,1, ...,N be a temporal mesh with spacing δ t = T/N, and ui be an approximation to u(ti). A
general one-step time discretization is now given by

u0 =g0

ui =Φi(ui−1)+gi, i = 1,2, ...,N.

Traditional time marching would first solve for i = 1, then solve for i = 2, and so on. For linear time propagators {Φi},
this can also be expressed as applying a direct solver (a forward solve) to the following system:

Au≡

I
−Φ1 I

. . .
. . .
−ΦN I

u0
u1
...

uN

=

g0
g1
...

gN

≡ g

or
Au = g.

This process is optimal and O(N), but it is sequential. XBraid achieves parallelism in time by replacing this sequential
solve with an optimal multigrid reduction iterative method 1 applied to only the time dimension. This approach is

• nonintrusive, in that it coarsens only in time and the user defines Φ. Thus, users can continue using existing time
stepping codes by wrapping them into our framework.

• optimal and O(N), but O(N) with a higher constant than time stepping. Thus with enough computational resources,
XBraid will outperform sequential time stepping.

• highly parallel

We now describe the two-grid process in more detail, with the multilevel analogue being a recursive application of the
process. We also assume that Φ is constant for notational simplicity. XBraid coarsens in the time dimension with factor
m > 1 to yield a coarse time grid with N∆ = N/m points and time step ∆T = mδ t. The corresponding coarse grid
problem,

A∆ =

I
−Φ∆ I

. . .
. . .
−Φ∆ I

 ,

is obtained by defining coarse grid propagators {Φ∆} which are at least as cheap to apply as the fine scale propagators
{Φ}. The matrix A∆ has fewer rows and columns than A, e.g., if we are coarsening in time by 2, A∆ has one half as
many rows and columns.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

2.3 Overview of the XBraid Algorithm 5

Lawrence Livermore National Laboratory LLNL-PRES-654654

!  Relaxation is highly parallel
•  Alternates between F-points and C-points
•  F-point relaxation = integration over each coarse time interval

 t0 t1 t2 t3
…

T0 T1

δt

ΔT = mδt

tN

F-point (fine grid only)
C-point (form coarse grid)

6

F-relaxation

!  Coarse-grid Petrov-Galerkin system gives exact solution at C-points

!  Replace impractical with , a rediscretization with

Au = g

A =

0
BBB@

I
�� I

. . .
. . .

�� I

1
CCCA

Fine System

A� =

0
BBB@

I
��m I

. . .
. . .

��m I

1
CCCA

Coarse Petrov-Galerkin System

���m �T

A�u� = g�

This coarse time grid induces a partition of the fine grid into C-points (associated with coarse grid points) and F-points,
as visualized next. C-points exist on both the fine and coarse time grid, but F-points exist only on the fine time scale.

Every multigrid algorithm requires a relaxation method and an approach to transfer values between grids. Our relaxation
scheme alternates between so-called F-relaxation and C-relaxation as illustrated next. F-relaxation updates the F-
point values {u j} on interval (Ti,Ti+1) by simply propagating the C-point value umi across the interval using the time
propagator {Φ}. While this is a sequential process, each F-point interval update is independent from the others and
can be computed in parallel. Similarly, C-relaxation updates the C-point value umi based on the F-point value umi−1
and these updates can also be computed in parallel. This approach to relaxation can be thought of as line relaxation in
space in that the residual is set to 0 for an entire time step.

The F updates are done simultaneously in parallel, as depicted next.

Lawrence Livermore National Laboratory Internal Distribution Only

1.  FCF relaxation (highly parallel)

•  Update all F-points using time propagator �

The simplified two-grid method
updates a solution guess with

t0 t1 t2 t3
…

T0 T1

δt

ΔT = mδt

tN

F-point (fine grid only)
C-point (form coarse grid)

Update all F-point intervals in parallel, using , the time propagator
Figure 3: Update all F-point intervals in parallel, using the time propagator Φ.

Following the F sweep, the C updates are also done simultaneously in parallel, as depicted next.

Lawrence Livermore National Laboratory Internal Distribution Only

1.  FCF relaxation

•  Update all C-points using time propagator �

The simplified two-grid method
updates a solution guess with

t0 t1 t2 t3
…

T0 T1

δt

ΔT = mδt

tN

F-point (fine grid only)
C-point (form coarse grid)

Update all C-points in parallel, using , the time propagator
Figure 4: Update all C-points in parallel, using the time propagator Φ.

1 Ries, Manfred, Ulrich Trottenberg, and Gerd Winter. "A note on MGR methods." Linear Algebra and its Applications 49 (1983): 1-26.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

6 CONTENTS

In general, FCF- and F-relaxation will refer to the relaxation methods used in XBraid. We can say

• FCF- or F-relaxation is highly parallel.

• But, a sequential component exists equaling the number of F-points between two C-points.

• XBraid uses regular coarsening factors, i.e., the spacing of C-points happens every m points.

After relaxation, comes forming the coarse grid error correction. To move quantities to the coarse grid, we use the
restriction operator R which simply injects values at C-points from the fine grid to the coarse grid,

R =

I
0
...
0

I
0
...
0

. . .

T

.

The spacing between each I is m− 1 block rows. While injection is simple, XBraid always does an F-relaxation
sweep before the application of R, which is equivalent to using the transpose of harmonic interpolation for restric-
tion (see Parallel Time Integration with Multigrid). Another interpretation is that the F-relaxation
compresses the residual into the C-points, i.e., the residual at all F-points after an F-relaxation is 0. Thus, it makes
sense for restriction to be injection.

To define the coarse grid equations, we apply the Full Approximation Scheme (FAS) method, which is a nonlinear
version of multigrid. This is to accommodate the general case where f is a nonlinear function. In FAS, the solution
guess and residual (i.e., u,g−Au) are restricted. This is in contrast to linear multigrid which typically restricts only the
residual equation to the coarse grid. This algorithmic change allows for the solution of general nonlinear problems. For
more details, see this PDF by Van Henson for a good introduction to FAS. However, FAS was originally invented by
Achi Brandt.

A central question in applying FAS is how to form the coarse grid matrix A∆, which in turn asks how to define the coarse
grid time stepper Φ∆. One of the simplest choices (and one frequently used in practice) is to let Φ∆ simply be Φ but
with the coarse time step size ∆T = mδ t. For example, if Φ = (I− δ tA)−1 for some backward Euler scheme, then
Φ∆ = (I−mδ tA)−1 would be one choice.

With this Φ∆ and letting u∆ be the restricted fine grid solution and r∆ be the restricted fine grid residual, the coarse grid
equation

A∆(v∆) = A∆(u∆)+ r∆

is then solved. Finally, FAS defines a coarse grid error approximation e∆ = v∆−u∆, which is interpolated with PΦ back
to the fine grid and added to the current solution guess. Interpolation is equivalent to injecting the coarse grid to the
C-points on the fine grid, followed by an F-relaxation sweep (i.e., it is equivalent to harmonic interpolation, as mentioned

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

https://computation.llnl.gov/project/linear_solvers/pubs/mgritPaper-2014.pdf
http://computation.llnl.gov/casc/people/henson/postscript/UCRL_JC_150259.pdf

2.3 Overview of the XBraid Algorithm 7

above about restriction). That is,

PΦ =

I
Φ

Φ2

...
Φm−1

I
Φ

Φ2

...
Φm−1

. . .

,

where m is the coarsening factor. See Two-Grid Algorithm for a concise description of the FAS algorithm for MGRIT.

2.3.1 Two-Grid Algorithm

The two-grid FAS process is captured with this algorithm. Using a recursive coarse grid solve (i.e., step 3 becomes a
recursive call) makes the process multilevel. Halting is done based on a residual tolerance. If the operator is linear, this
FAS cycle is equivalent to standard linear multigrid. Note that we represent A as a function below, whereas the above
notation was simplified for the linear case.

1. Relax on A(u) = g using FCF-relaxation

2. Restrict the fine grid approximation and its residual:

u∆← Ru, r∆← R(g−A(u),

which is equivalent to updating each individual time step according to

u∆,i← umi, r∆,i← gmi−A(u)mi for i = 0, ...,N∆.

3. Solve A∆(v∆) = A∆(u∆)+ r∆

4. Compute the coarse grid error approximation: e∆ = v∆−u∆

5. Correct: u← u+Pe∆

This is equivalent to updating each individual time step by adding the error to the values of u at the C-points:

umi = umi + e∆,i,

followed by an F-relaxation sweep applied to u.

2.3.2 Summary

In summary, a few points are

• XBraid is an iterative solver for the global space-time problem.

• The user defines the time stepping routine Φ and can wrap existing code to accomplish this.

• XBraid convergence will depend heavily on how well Φ∆ approximates Φm, that is how well a time step size of
mδ t = ∆T will approximate m applications of the same time integrator for a time step size of δ t. This is a subject
of research, but this approximation need not capture fine scale behavior, which is instead captured by relaxation
on the fine grid.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

8 CONTENTS

• The coarsest grid is solved exactly, i.e., sequentially, which can be a bottleneck for two-level methods like
Parareal, 2 but not for a multilevel scheme like XBraid where the coarsest grid is of trivial size.

• By forming the coarse grid to have the same sparsity structure and time stepper as the fine grid, the algorithm
can recur easily and efficiently.

• Interpolation is ideal or exact, in that an application of interpolation leaves a zero residual at all F-points.

• The process is applied recursively until a trivially sized temporal grid is reached, e.g., 2 or 3 time points. Thus,
the coarsening rate m determines how many levels there are in the hierarchy. For instance in this figure, a 3 level
hierarchy is shown. Three levels are chosen because there are six time points, m = 2 and m2 < 6 ≤ m3. If the
coarsening rate had been m = 4 then there would only be two levels because there would be no more points to
coarsen!

Lawrence Livermore National Laboratory Internal Distribution Only

Flexible framework: Adaptivity in time

F-point (fine grid only)
C-point (coarse grid)

!  In Phi, user returns rfactor, indicating whether to subdivide the interval

!  Example time domain

Level 0
Level 1
Level 2

This aspect is a work in progress and is only partially implemented.
By default, XBraid will subdivide the time domain into evenly sized time steps. XBraid is structured to handle
variable time step sizes and adaptive time step sizes.

2.4 Overview of the XBraid Code

XBraid is designed to run in conjunction with an existing application code that can be wrapped per our interface. This
application code will implement some time marching simulation like fluid flow. Essentially, the user has to take their
application code and extract a stand-alone time-stepping function Φ that can evolve a solution from one time value
to another, regardless of time step size. After this is done, the XBraid code takes care of the parallelism in the time
dimension.

XBraid

• is written in C and can easily interface with Fortran and C++

• uses MPI for parallelism

• self documents through comments in the source code and through ∗.md files

• functions and structures are prefixed by braid

– User routines are prefixed by braid_

– Developer routines are prefixed by _braid_

2.4.1 Parallel decomposition and memory

• XBraid decomposes the problem in parallel as depicted next. As you can see, traditional time stepping only stores
one time step at a time, but only enjoys a spatial data decomposition and spatial parallelism. On the other hand,
XBraid stores multiple time steps simultaneously and each processor holds a space-time chunk reflecting both
the spatial and temporal parallelism.

• XBraid only handles temporal parallelism and is agnostic to the spatial decomposition. See braid_Split-
Commworld. Each processor owns a certain number of CF intervals of points. In the following figure, processor
1 and processor 2 each own 2 CF intervals. XBraid distributes intervals evenly on the finest grid.

2 Lions, J., Yvon Maday, and Gabriel Turinici. "A”parareal”in time discretization of PDE’s." Comptes Rendus de l’Academie des Sciences Series I
Mathematics 332.7 (2001): 661-668.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

2.4 Overview of the XBraid Code 9

Serial'(me'stepping

'' ''''

x'(space)

t'(
(m

e)

Mul(grid5in5(me

'' ''''

'' ''''

'' ''''

'' ''''

x'(space)

t'(
(m

e)

Lawrence Livermore National Laboratory LLNL-PRES-654654

!  Relaxation is highly parallel
•  Alternates between F-points and C-points
•  F-point relaxation = integration over each coarse time interval

 t0 t1 t2 t3
…

T0 T1

δt

ΔT = mδt

tN

F-point (fine grid only)
C-point (form coarse grid)

6

F-relaxation

!  Coarse-grid Petrov-Galerkin system gives exact solution at C-points

!  Replace impractical with , a rediscretization with

Au = g

A =

0
BBB@

I
�� I

. . .
. . .

�� I

1
CCCA

Fine System

A� =

0
BBB@

I
��m I

. . .
. . .

��m I

1
CCCA

Coarse Petrov-Galerkin System

���m �T

A�u� = g�

Processor'0' Processor'1'

• XBraid increases the parallelism significantly, but now several time steps need to be stored, requiring more
memory. XBraid employs two strategies to address the increased memory costs.

– First, one need not solve the whole problem at once. Storing only one space-time slab is advisable. That
is, solve for as many time steps (say k time steps) as you have available memory for. Then move on to the
next k time steps.

– Second, XBraid provides support for storing only C-points. Whenever an F-point is needed, it is generated
by F-relaxation. More precisely, only the red C-point time values in the previous figure are stored. Coars-
ening is usually aggressive with m = 8,16,32, ..., so the storage requirements of XBraid are significantly
reduced when compared to storing all of the time values.

Overall, the memory multiplier per processor when using XBraid is O(1) if space-time coarsening (see The
Simplest Example) is used and O(logm N) for time-only coarsening. The time-only coarsening option is the
default and requires no user-written spatial interpolation/restriction routines (which is the case for space-time
coasrening). We note that the base of the logarithm is m, which can be quite large.

2.4.2 Cycling and relaxation strategies

There are two main cycling strategies available in XBraid, F-and V-cycles. These two cycles differ in how often and the
order in which coarse levels are visited. A V-cycle is depicted next, and is a simple recursive application of the Two-Grid
Algorithm.

V"cycle'

F"cycle'

An F-cycle visits coarse grids more frequently and in a different order. Essentially, an F-cycle uses a V-cycle as the
post-smoother, which is an expensive choice for relaxation. But, this extra work gives you a closer approximation to a
two-grid cycle, and a faster convergence rate at the extra expense of more work. The effectiveness of a V-cycle as a
relaxation scheme can be seen in Figure 2, where one V-cycle globally propagates and smoothes the error. The cycling
strategy of an F-cycle is depicted next.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

10 CONTENTS

V"cycle'

F"cycle'

Next, we make a few points about F- versus V-cycles.

• One V-cycle iteration is cheaper than one F-cycle iteration.

• But, F-cycles often converge more quickly. For some test cases, this difference can be quite large. The cycle
choice for the best time to solution will be problem dependent. See Scaling Study with this Example for a case
study of cycling strategies.

• For exceptionally strong F-cycles, the option braid_SetNFMGVcyc can be set to use multiple V-cycles as relax-
ation. This has proven useful for some problems with a strongly advective nature.

The number of FC relaxation sweeps is another important algorithmic setting. Note that at least one F-relaxation sweep
is always done on a level. A few summary points about relaxation are as follows.

• Using FCF, FCFCF, or FCFCFCF relaxation corresponds to passing braid_SetNRelax a value of 1, 2 or 3 respec-
tively, and will result in an XBraid cycle that converges more quickly as the number of relaxations grows.

• But as the number of relaxations grows, each XBraid cycle becomes more expensive. The optimal relaxation
strategy for the best time to solution will be problem dependent.

• However, a good first step is to try FCF on all levels (i.e., braid_SetNRelax(core, -1, 1)).

• A common optimization is to first set FCF on all levels (i.e., braid_setnrelax(core, -1, 1)), but then overwrite the
FCF option on level 0 so that only F-relaxation is done on level 0, (i.e., braid_setnrelax(core, 0, 1)). Another
strategy is to use F-relaxation on all levels together with F-cycles.

• See Scaling Study with this Example for a case study of relaxation strategies.

Last, Parallel Time Integration with Multigrid has a more in depth case study of cycling and relax-
ation strategies

2.4.3 Overlapping communication and computation

XBraid effectively overlaps communication and computation. The main computational kernel of XBraid is one relaxation
sweep touching all the CF intervals. At the start of a relaxation sweep, each process first posts a non-blocking receive
at its left-most point. It then carries out F-relaxation in each interval, starting with the right-most interval to send the
data to the neighboring process as soon as possible. If each process has multiple CF intervals at this XBraid level, the
strategy allows for complete overlap.

2)#Compute#and#send#

•  User#defines#two#objects:#
–  App#and#Vector)

•  User#also#writes#several#wrapper#rou:nes:#
–  Phi,#Init,#Clone,#Free,#Sum,#Dot,#Write,#BufPack,#BufUnpack)

–  Coarsen,#Restrict#(op:onal,#for#spa:al#coarsening))

•  Phi(app,)tstart,)tstop,)accuracy,)u,)&rfactor))
–  Advances#vector#u#from#:me#tstart#to#tstop)

–  Return#value#rfactor#specifies#a#requested#temporal#refinement#factor#

•  Code#stores#only#CCpoints#to#minimize#storage#

•  Consider#relaxa:on#over#a#processor’s#por:on#of#the#:me#interval#
–  Each#proc#starts#with#rightCmost#interval#to#overlap#comm/comp#

Flexible#framework:#nonCintrusive#

1)#Post#receive#

2.4.4 Configuring the XBraid Hierarchy

Some of the more basic XBraid function calls allow you to control aspects discussed here.

• braid_SetFMG: switches between using F- and V-cycles.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

https://computation.llnl.gov/project/linear_solvers/pubs/mgritPaper-2014.pdf

2.4 Overview of the XBraid Code 11

• braid_SetMaxIter: sets the maximum number of XBraid iterations

• braid_SetCFactor: sets the coarsening factor for any (or all levels)

• braid_SetNRelax: sets the number of CF-relaxation sweeps for any (or all levels)

• braid_SetRelTol, braid_SetAbsTol: sets the stopping tolerance

• braid_SetMinCoarse: sets the minimum possible coarse grid size

• braid_SetMaxLevels: sets the maximum number of levels in the XBraid hierarchy

2.4.5 Halting tolerance

Another important configuration aspect regards setting a residual halting tolerance. Setting a tolerance involves these
three XBraid options:

1. braid_PtFcnSpatialNorm
This user-defined function carries out a spatial norm by taking the norm of a braid_Vector. A common choice is
the standard Eucliden norm (2-norm), but many other choices are possible, such as an L2-norm based on a finite
element space.

2. braid_SetTemporalNorm
This option determines how to obtain a global space-time residual norm. That is, this decides how to combine
the spatial norms returned by braid_PtFcnSpatialNorm at each time step to obtain a global norm over space and
time. It is this global norm that then controls halting.
There are three tnorm options supported by braid_SetTemporalNorm. We let the summation index i be over all
C-point values on the fine time grid, k refer to the current XBraid iteration, r be residual values, space_time norms
be a norm over the entire space-time domain and spatial_norm be the user-defined spatial norm from braid_Pt-
FcnSpatialNorm. Thus, ri is the residual at the ith C-point, and r(k) is the residual at the kth XBraid iteration. The
three options are then defined as,

• tnorm=1: One-norm summation of spatial norms

‖r(k)‖space_time = Σi‖r(k)i ‖spatial_norm

If braid_PtFcnSpatialNorm is the one-norm over space, then this is equivalent to the one-norm of the global
space-time residual vector.

• tnorm=2: Two-norm summation of spatial norms

‖r(k)‖space_time =
(

Σi‖r(k)i ‖2
spatial_norm

)1/2

If braid_PtFcnSpatialNorm is the Euclidean norm (two-norm) over space, then this is equivalent to the
Euclidean-norm of the global space-time residual vector.

• tnorm=3: Infinity-norm combination of spatial norms

‖r(k)‖space_time = max
i
‖r(k)i ‖spatial_norm

If braid_PtFcnSpatialNorm is the infinity-norm over space, then this is equivalent to the infinity-norm of the
global space-time residual vector.

The default choice is tnorm=2

3. braid_SetAbsTol, braid_SetRelTol

• If an absolute tolerance is used, then
‖r(k)‖space_time < tol

defines when to halt.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

12 CONTENTS

• If a relative tolerance is used, then
‖r(k)‖space_time
‖r(0)‖space_time

< tol

defines when to halt. That is, the current kth residual is scaled by the initial residual before comparison to
the halting tolerance. This is similar to typical relative residual halting tolerances used in spatial multigrid,
but can be a dangerous choice in this setting.

Care should be practiced when choosing a halting tolerance. For instance, if a relative tolerance is used, then issues
can arise when the initial guess is zero for large numbers of time steps. Taking the case where the initial guess (defined
by braid_PtFcnInit) is 0 for all time values t > 0, the initial residual norm will essentially only be nonzero at the first time
value,

‖r(0)‖space_time ≈ ‖r
(k)
1 ‖spatial_norm

This will skew the relative halting tolerance, especially if the number of time steps increases, but the initial residual norm
does not.

A better strategy is to choose an absolute tolerance that takes your space-time domain size into account, as in Section
Scaling Study with this Example, or to use an infinity-norm temporal norm option.

2.4.6 Debugging XBraid

Wrapping and debugging a code with XBraid typically follows a few steps.

• Test your wrapped functions with XBraid test functions, e.g., braid_TestClone or braid_TestSum.

• Set max levels to 1 (braid_SetMaxLevels) and run an XBraid simulation. You should get the exact same answer
as that achieved with sequential time stepping. If you make sure that the time-grids used by XBraid and by
sequential time stepping are bit-wise the same (by using the user-defined time grid option braid_SetTimeGrid),
then the agreement of their solutions should be bit-wise the same.

• Set max levels to 2, halting tolerance to 0.0 (braid_SetAbsTol), max iterations to 3 (braid_SetMaxIter) and turn
on the option braid_SetSeqSoln. This will use the solution from sequential time-stepping as the initial guess for
XBraid and then run 3 iterations. The residual should be exactly 0 each iteration, verifying the fixed-point nature
of XBraid and a (hopefully!) correct implementation. The residual may be on the order of machine epsilon (or
smaller).

• A similar test turns on debug level printing by passing a print level of 2 to braid_SetPrintLevel. This will print
out the residual norm at each C-point. XBraid with FCF-relaxation has the property that the exact solution is
propagated forward two C-points each iteration. Thus, this should be reflected by numerically zero residual
values for the first so many time points.

• Finally, run some multilevel tests, making sure that the XBraid results are within the halting tolerance of the
solutions generated by sequential time-stepping. Congrats!

2.5 Citing XBraid

To cite XBraid, please state in your text the version number from the VERSION file, and please cite the project website
in your bibliography as

[1] XBraid: Parallel multigrid in time. http://llnl.gov/casc/xbraid.

The corresponding BibTex entry is

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

http://llnl.gov/casc/xbraid

2.6 Summary 13

@misc{xbraid-package,
title = {{XB}raid: Parallel multigrid in time},
howpublished = {\url{http://llnl.gov/casc/xbraid}}
}

2.6 Summary

• XBraid applies multigrid to the time dimension.

– This exposes concurrency in the time dimension.

– The potential for speedup is large, 10x, 100x, ...

• This is a non-intrusive approach, with an unchanged time discretization defined by user.

• Parallel time integration is only useful beyond some scale. This is evidenced by the experimental results below.
For smaller numbers of cores sequential time stepping is faster, but at larger core counts XBraid is much faster.

• The more time steps that you can parallelize over, the better your speedup will be.

• XBraid is optimal for a variety of parabolic problems (see the examples directory).

3 Examples

This section is the chief tutorial of XBraid, illustrating how to use it through a sequence of progressively more sophisti-
cated examples.

3.1 The Simplest Example

User Defined Structures and Wrappers

The user must wrap their existing time stepping routine per the XBraid interface. To do this, the user must define two
data structures and some wrapper routines. To make the idea more concrete, we now give these function definitions
from examples/ex-01, which implements a scalar ODE,

ut = λu.

The two data structures are:

1. App: This holds a wide variety of information and is global in that it is passed to every function. This structure
holds everything that the user will need to carry out a simulation. Here for illustration, this is just an integer storing
a processor’s rank.
typedef struct _braid_App_struct
{

int rank;
} my_App;

2. Vector: this defines (roughly) a state vector at a certain time value. It could also contain any other information
related to this vector which is needed to evolve the vector to the next time value, like mesh information. Here, the
vector is just a scalar double.
typedef struct _braid_Vector_struct
{

double value;
} my_Vector;

The user must also define a few wrapper routines. Note, that the app structure is the first argument to every function.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

14 CONTENTS

1. Step: This function tells XBraid how to take a time step, and is the core user routine. The user must advance the
vector u from time tstart to time tstop. Note how the time values are given to the user through the status structure
and associated Get routine. Important note: the gi function from Overview of the XBraid Algorithm must be
incorporated into Step, so that the following equation is solved by default.

Φ(ui) = 0.

The ustop parameter serves as an approximation to the solution at time tstop and is not needed here. It can be
useful for implicit schemes that require an initial guess for a linear or nonlinear solver. The use of fstop is an
advanced parameter (not required) and forms the the right-hand side of the nonlinear problem on the given time
grid. This value is only nonzero when providing a residual with braid_SetResidual. More information on how to
use this optional feature is given below.

Here advancing the solution just involves the scalar λ .
int
my_Step(braid_App app,

braid_Vector ustop,
braid_Vector fstop,
braid_Vector u,
braid_StepStatus status)

{
double tstart; /* current time */
double tstop; /* evolve to this time*/
braid_StepStatusGetTstartTstop(status, &tstart, &tstop);

/* Use backward Euler to propagate solution */
(u->value) = 1./(1. + tstop-tstart)*(u->value);

return 0;
}

2. Init: This function tells XBraid how to initialize a vector at time t. Here that is just allocating and setting a scalar
on the heap.

int
my_Init(braid_App app,

double t,
braid_Vector *u_ptr)

{
my_Vector *u;

u = (my_Vector *) malloc(sizeof(my_Vector));
if (t == 0.0) /* Initial condition */
{

(u->value) = 1.0;
}
else /* All other time points set to arbitrary value */
{

(u->value) = 0.456;
}

*u_ptr = u;

return 0;
}

3. Clone: This function tells XBraid how to clone a vector into a new vector.
int
my_Clone(braid_App app,

braid_Vector u,
braid_Vector *v_ptr)

{
my_Vector *v;

v = (my_Vector *) malloc(sizeof(my_Vector));
(v->value) = (u->value);

*v_ptr = v;

return 0;

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

3.1 The Simplest Example 15

}

4. Free: This function tells XBraid how to free a vector.
int
my_Free(braid_App app,

braid_Vector u)
{

free(u);

return 0;
}

5. Sum: This function tells XBraid how to sum two vectors (AXPY operation).
int
my_Sum(braid_App app,

double alpha,
braid_Vector x,
double beta,
braid_Vector y)

{
(y->value) = alpha*(x->value) + beta*(y->value);

return 0;
}

6. SpatialNorm: This function tells XBraid how to take the norm of a braid_Vector and is used for halting. This norm
is only over space. A common norm choice is the standard Euclidean norm, but many other choices are possible,
such as an L2-norm based on a finite element space. The norm choice should be based on what makes sense
for your problem. How to accumulate spatial norm values to obtain a global space-time residual norm for halting
decisions is controlled by braid_SetTemporalNorm.

int
my_SpatialNorm(braid_App app,

braid_Vector u,
double *norm_ptr)

{
double dot;

dot = (u->value)*(u->value);

*norm_ptr = sqrt(dot);

return 0;
}

7. Access: This function allows the user access to XBraid and the current solution vector at time t. This is most
commonly used to print solution(s) to screen, file, etc... The user defines what is appropriate output. Notice how
you are told the time value t of the vector u and even more information in astatus. This lets you tailor the output
to only certain time values at certain XBraid iterations. Querying astatus for such information is done through
braid_AccessStatusGet∗∗(..) routines.

The frequency of the calls to access is controlled through braid_SetAccessLevel. For instance, if access_level
is set to 2, then access is called every XBraid iteration and on every XBraid level. In this case, querying astatus
to determine the current XBraid level and iteration will be useful. This scenario allows for even more detailed
tracking of the simulation. The default access_level is 1 and gives the user access only after the simulation ends
and only on the finest time-grid.

Eventually, this routine will allow for broader access to XBraid and computational steering.

See examples/ex-03 and drivers/drive-diffusion for more advanced uses of the access function.
In drive-diffusion, access is used to write solution vectors to a GLVIS visualization port, and ex-03 uses
access to write to .vtu files.

int
my_Access(braid_App app,

braid_Vector u,
braid_AccessStatus astatus)

{
int index;

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

16 CONTENTS

char filename[255];
FILE *file;

braid_AccessStatusGetTIndex(astatus, &index);
sprintf(filename, "%s.%04d.%03d", "ex-01.out", index, app->rank);
file = fopen(filename, "w");
fprintf(file, "%.14e\n", (u->value));
fflush(file);
fclose(file);

return 0;
}

8. BufSize, BufPack, BufUnpack: These three routines tell XBraid how to communicate vectors between proces-
sors. BufPack packs a vector into a void ∗ buffer for MPI and then BufUnPack unpacks the void ∗ buffer
into a vector. Here doing that for a scalar is trivial. BufSize computes the upper bound for the size of an arbitrary
vector.

Note how BufPack also sets the size in bstatus. This value is optional, but if set it should be the exact number
of bytes packed, while BufSize should provide only an upper-bound on a possible buffer size. This flexibility
allows for the buffer to be allocated the fewest possible times, but smaller messages to be sent when needed.
For instance, this occurs when using variable spatial grid sizes. To avoid MPI issues, it is very important that
BufSize be pessimistic, provide an upper bound, and return the same value across processors.

In general, the buffer should be self-contained. The receiving processor should be able to pull all necessary
information from the buffer in order to properly interpret and unpack the buffer.

int
my_BufSize(braid_App app,

int *size_ptr,
braid_BufferStatus bstatus)

{

*size_ptr = sizeof(double);
return 0;

}

int
my_BufPack(braid_App app,

braid_Vector u,
void *buffer,
braid_BufferStatus bstatus)

{
double *dbuffer = buffer;

dbuffer[0] = (u->value);
braid_BufferStatusSetSize(bstatus, sizeof(double));

return 0;
}

int
my_BufUnpack(braid_App app,

void *buffer,
braid_Vector *u_ptr,
braid_BufferStatus bstatus)

{
double *dbuffer = buffer;
my_Vector *u;

u = (my_Vector *) malloc(sizeof(my_Vector));
(u->value) = dbuffer[0];

*u_ptr = u;

return 0;
}

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

3.2 Some Advanced Features 17

Running XBraid for this Example

A typical flow of events in the main function is to first initialize the app structure.

/* set up app structure */
app = (my_App *) malloc(sizeof(my_App));
(app->rank) = rank;

Then, the data structure definitions and wrapper routines are passed to XBraid. The core structure is used by XBraid
for internal data structures.

braid_Core core;
braid_Init(MPI_COMM_WORLD, comm, tstart, tstop, ntime, app,

my_Step, my_Init, my_Clone, my_Free, my_Sum, my_SpatialNorm,
my_Access, my_BufSize, my_BufPack, my_BufUnpack, &core);

Then, XBraid options are set.

braid_SetPrintLevel(core, 1);
braid_SetMaxLevels(core, max_levels);
braid_SetAbsTol(core, tol);
braid_SetCFactor(core, -1, cfactor);

Then, the simulation is run.

braid_Drive(core);

Then, we clean up.

braid_Destroy(core);

Finally, to run ex-01, type

ex-01

3.2 Some Advanced Features

We now give an overview of some optional advanced features that will be implemented in some of the following exam-
ples.

1. SCoarsen, SRestrict: These are advanced options that allow for coarsening in space while you coarsen in
time. This is useful for maintaining stable explicit schemes on coarse time scales and is not needed here.
See examples/ex-02 for a simple example of this feature, and then drivers/drive-diffusion and
drivers/drive-diffusion-2D for more advanced examples of this feature.

These functions allow you to vary the spatial mesh size on XBraid levels as depicted here where the spatial and
temporal grid sizes are halved every level.

ht, hx

2ht, 2hx

4ht, 4hx

8ht, 8hx

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

18 CONTENTS

2. Residual: A user-defined residual can be provided with the function braid_SetResidual and can result in substan-
tial computational savings, as explained below. However to use this advanced feature, one must first understand
how XBraid measures the residual. XBraid computes residuals of this equation,

Ai(ui,ui−1) = fi,

where Ai(,) evaluates one block-row of the the global space-time operator A. The forcing fi is the XBraid forcing,
which is the FAS right-hand-side term on coarse grids and 0 on the finest grid. The PDE forcing goes inside of
Ai.
Since XBraid assumes one-step methods, Ai() is defined to be

Ai(ui,ui−1) =−Φ(ui−1)+Ψ(ui),

i.e., the subdiagonal and diagonal blocks of A.

Default setting: In the default XBraid setting (no residual option used), the user only implements Step() and
Step() will simply apply Φ(), because Ψ() is assumed to be the identity. Thus, XBraid can compute the residual
using only the user-defined Step() function by combining Step() with the Sum() function, i.e.

ri = fi +Φ(ui−1)−ui.

The fstop parameter in Step() corresponds to fi, but is always passed in as NULL to the user in this setting and
should be ignored. This is because XBraid can compute the contribution of fi to the residual on its own using the
Sum() function.
An implication of this is that the evaluation of Φ() on the finest grid must be very accurate, or the residual will
not be accurate. This leads to a nonintrusive, but expensive algorithm. The accuracy of Φ() can be relaxed on
coarser grids to save computations.

Residual setting: The alternative to the above default least-intrusive strategy is to have the user define

Ai(ui,ui−1) =−Φ(ui−1)+Ψ(ui),

directly, which is what the Residual function implements (set with braid_PtFcnResidual). In other words, the
user now defines each block-row of the space-time operator, rather than only defining Φ(). The user Residual()
function computes Ai(ui,ui−1) and XBraid then subtracts this from fi to compute ri.
However, more care must now be taken when defining the Step() function. In particular, the fstop value (i.e., the
fi value) must be taken into account. Essentially, the definition of Step() changes so that it no longer defines Φ(),
but instead defines a (possibly inexact) solve of the equation defined by

Ai(ui,ui−1) = fi.

Thus, Step() must be compatible with Residual(). Expanding the previous equation, we say that Step() must now
compute

ui = Ψ
−1(fi +Φ(ui−1)).

It is clear that the fstop value (i.e., the fi value) must now be given to the Step() function so that this equation can
be solved by the user. In other words, fstop is now no longer NULL.
Essentially, one can think of Residual() as defining the equation, and Step() defining a preconditioner for that row
of the equation, or an inexact solve for ui.
As an example, let Ψ = (I +∆tL), where L is a Laplacian and Φ = I. The application of the residual function
will only be a sparse matrix-vector multiply, as opposed to the default case where an inversion is required for
Φ = (I +∆tL)−1 and Ψ = I. This results in considerable computational savings. Moreover, the application of
Step() now involves an inexact inversion of Ψ, e.g., by using just one spatial multigrid V-cycle. This again results
in substantial computation savings when compared with the naive approach of a full matrix inversion.

Another way to think about the compatibility between Ψ and Φ is that

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

3.3 Simplest example expanded 19

fi−Ai(ui,ui−1) = 0

must hold exactly if ui is an exact propagation of ui−1, that is,

fi−Ai(Step(ui−1, fi),ui−1) = 0

must hold. When the accuracy of the Step() function is reduced (as mentioned above), this exact equality with 0
is lost, but this should evaluate to something small. There is an XBraid test function braid_TestResidual that
tests for this compatibility.

The residual feature is implemented in the examples examples/ex-01-expanded.c, examples/ex-02.-
c, and examples/ex-03.c.

3. Adaptive and variable time stepping: This feature is available by first calling the function braid_SetRefine in
the main driver and then using braid_StepStatusSetRFactor in the Step routine to set a refinement factor for
interval [tstart, tstop]. In this way, user-defined criteria can subdivide intervals on the fly and adaptively refine in
time. For instance, returning a refinement factor of 4 in Step will tell XBraid to subdivide that interval into 4 evenly
spaced smaller intervals for the next iteration. Refinement can only be done on the finest XBraid level.

Currently, each refinement factor is constrained to be no larger than the coarsening factor. The final time grid
is constructed adaptively in an FMG-like cycle by refining the initial grid according to the requested refine-
ment factors. Refinement stops when the requested factors are all one or when various upper bounds are
reached such as the max number of time points or max number of time grid refinement levels allowed. See
examples/ex-03.c for an implementation of this.

4. Shell-vector: This feature supports the use of multi-step methods. The strategy for BDF-K methods is to allow
for the lumping of k time points into a single XBraid vector. So, if the problem had 100 time points and the
time-stepper was BDF-2, then XBraid would only see 50 time points but each XBraid vector would contain
two separate time points. By lumping 2 time points into one vector, the BDF-2 scheme remains one-step and
compatible with XBraid.
However, the time-point spacing between the two points internal to the vector stays the same on all time grids,
while the spacing between vectors grows on coarse time grids. This creates an irregular spacing which is prob-
lematic for BDF-k methods. Thus the shell-vector strategy lets meta-data be stored at all time points, even for
F-points which are usually not stored, so that the irregular spacings can be tracked and accounted for with the
BDF method. (Note, there are other possible uses for shell-vectors.)
There are many strategies for handling the coarse time-grids with BDF methods (dropping the BDF order, ad-
justing time-point spacings inside the lumped vectors, etc...). Prospective users are encouraged to contact
xbraid-support@llnl.gov because this is active research.
See examples/ex-01-expanded-bdf2.c.

5. Storage: This option (see braid_SetStorage) allows the user to specify storage at all time points (C and F) or only
at C-points. This extra storage is useful for implicit methods, where the solution value from the previous XBraid
iteration for time step i can be used as the initial guess when computing step i with the implicit solver. This is
often a better initial guess than using the solution value from the previous time step i−1. The default is to store
only C-point values, thus the better initial guess is only available at C-points in the default setting. When storage
is turned on at F-points, the better initial guess becomes available everywhere.
In general, the user should always use the ustop parameter in Step() as the initial guess for an implicit solve. If
storage is turned on (i.e., set to 0), then this value will always be the improved initial guess for C- and F-points.
If storage is not turned on, then this will be the improved guess only for C-points. For F-points, it will equal the
solution from the previous time step.
See examples/ex-03 for an example which uses this feature.

3.3 Simplest example expanded

These examples build on The Simplest Example, but still solve the scalar ODE,

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

mailto:xbraid-support@llnl.gov

20 CONTENTS

ut = λu.

The goal here is to show more advanced features of XBraid.

• examples/ex-01-expanded.c: same as ex-01.c but adds more XBraid features such as the residual
feature, the user defined initial time-grid and full multigrid cycling.

• examples/ex-01-expanded-bdf2.c: same as ex-01-expanded.c, but uses BDF2 instead of backward
Euler. This example makes use of the advanced shell-vector feature in order to implement BDF2.

• examples/ex-01-expanded-f.f90: same as ex-01-expanded.c, but implemented in f90.

3.4 One-Dimensional Heat Equation

In this example, we assume familiarity with The Simplest Example. This example is a time-only parallel example that
implements the 1D heat equation,

δ/δt u(x, t) = ∆u(x, t)+g(x, t),

as opposed to The Simplest Example, which implements only a scalar ODE for one degree-of-freedom in space. There
is no spatial parallelism, as a serial cyclic reduction algorithm is used to invert the tri-diagonal spatial operators. The
space-time discretization is the standard 3-point finite difference stencil ([−1,2,−1]), scaled by mesh widths. Backward
Euler is used in time.

This example consists of three files and two executables.

• examples/ex-02-serial.c: This file compiles into its own executable ex-02-serial and represents
a simple example user application that does sequential time-stepping. This file represents where a new XBraid
user would start, in terms of converting a sequential time-stepping code to XBraid.

• examples/ex-02.c: This file compiles into its own executable ex-02 and represents a time-parallel XBraid
wrapping of the user application ex-02-serial.

• ex-02-lib.c: This file contains shared functions used by the time-serial version and the time-parallel version.
This file provides the basic functionality of this problem. For instance, take_step(u, tstart, tstop, ...) carries out a
step, moving the vector u from time tstart to time tstop.

3.5 Two-Dimensional Heat Equation

In this example, we assume familiarity with The Simplest Example and describe the major ways in which this example
differs. This example is a full space-time parallel example, as opposed to The Simplest Example, which implements
only a scalar ODE for one degree-of-freedom in space. We solve the heat equation in 2D,

δ/δt u(x,y, t) = ∆u(x,y, t)+g(x,y, t).

For spatial parallelism, we rely on the hypre package where the SemiStruct interface is used to define our spatial
discretization stencil and form our time stepping scheme, the backward Euler method. The spatial discretization is
just the standard 5-point finite difference stencil ([−1;−1,4,−1;−1]), scaled by mesh widths, and the PFMG solver
is used for the solves required by backward Euler. Please see the hypre manual and examples for more information
on the SemiStruct interface and PFMG. Although, the hypre specific calls have mostly been abstracted away for this
example, and so it is not necessary to be familiar with the SemiStruct interface for this example.

This example consists of three files and two executables.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

https://computation.llnl.gov/project/linear_solvers/software.php

3.5 Two-Dimensional Heat Equation 21

• examples/ex-03-serial.c: This file compiles into its own executable ex-03-serial and represents a simple
example user application. This file supports only parallelism in space and represents a basic approach to doing
efficient sequential time stepping with the backward Euler scheme. Note that the hypre solver used (PFMG) to
carry out the time stepping is highly efficient.

• examples/ex-03.c: This file compiles into its own executable ex-03 and represents a basic example of wrapping
the user application ex-03-serial. We will go over the wrappers below.

• ex-03-lib.c: This file contains shared functions used by the time-serial version and the time-parallel version. This
is where most of the hypre specific calls reside. This file provides the basic functionality of this problem. For
instance, take_step(u, tstart, tstop, ...) carries out a step, moving the vector u from time tstart to time tstop and
setUpImplicitMatrix(...) constructs the matrix to be inverted by PFMG for the backward Euler method.

User Defined Structures and Wrappers

We now discuss in more detail the important data structures and wrapper routines in examples/ex-03.c. The
actual code for this example is quite simple and it is recommended to read through it after this overview.

The two data structures are:

1. App: This holds a wide variety of information and is global in that it is passed to every user function. This
structure holds everything that the user will need to carry out a simulation. One important structure contained in
the app is the simulation_manager. This is a structure native to the user code ex-03-lib.c. This structure
conveniently holds the information needed by the user code to carry out a time step. For instance,
app->man->A

is the time stepping matrix,
app->man->solver

is the hypre PFMG solver object,
app->man->dt

is the current time step size. The app is defined as

typedef struct _braid_App_struct {
MPI_Comm comm; /* global communicator */
MPI_Comm comm_t; /* communicator for parallelizing in time */
MPI_Comm comm_x; /* communicator for parallelizing in space */
int pt; /* number of processors in time */
simulation_manager *man; /* user’s simulation manager structure */
HYPRE_SStructVector e; /* temporary vector used for error computations */
int nA; /* number of spatial matrices created */
HYPRE_SStructMatrix *A; /* array of spatial matrices, size nA, one per level*/
double *dt_A; /* array of time step sizes, size nA, one per level*/
HYPRE_StructSolver *solver; /* array of PFMG solvers, size nA, one per level*/
int use_rand; /* binary value, use random or zero initial guess */
int *runtime_max_iter; /* runtime info for number of PFMG iterations*/
int *max_iter_x; /* maximum iteration limits for PFMG */

} my_App;

The app contains all the information needed to take a time step with the user code for an arbitrary time step size. See
the Step function below for more detail.

1. Vector: this defines a state vector at a certain time value. Here, the vector is a structure containing a native
hypre data-type, the SStructVector, which describes a vector over the spatial grid. Note that my_Vector is used
to define braid_Vector.
typedef struct _braid_Vector_struct {

HYPRE_SStructVector x;
} my_Vector;

The user must also define a few wrapper routines. Note, that the app structure is the first argument to every function.

1. Step: This function tells XBraid how to take a time step, and is the core user routine. This function advances the
vector u from time tstart to time tstop. A few important things to note are as follows.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

22 CONTENTS

• The time values are given to the user through the status structure and associated Get routines.

• The basic strategy is to see if a matrix and solver already exist for this dt value. If not, generate a new
matrix and solver and store them in the app structure. If they do already exist, then re-use the data.

• To carry out a step, the user routines from ex-03-lib.c rely on a few crucial data members man->dt,
man->A and man-solver. We overwrite these members with the correct information for the time step size
in question. Then, we pass man and u to the user function take_step(...) which evolves u.

• The forcing term gi is wrapped into the take_step(...) function. Thus, Φ(ui)→ ui+1.
int my_Step(braid_App app,

braid_Vector u,
braid_StepStatus status)

{
double tstart; /* current time */
double tstop; /* evolve u to this time*/
int i, A_idx;
int iters_taken = -1;

/* Grab status of current time step */
braid_StepStatusGetTstartTstop(status, &tstart, &tstop);

/* Check matrix lookup table to see if this matrix already exists*/
A_idx = -1.0;
for(i = 0; i < app->nA; i++){

if(fabs(app->dt_A[i] - (tstop-tstart))/(tstop-tstart) < 1e-10) {
A_idx = i;
break;

}
}

/* We need to "trick" the user’s manager with the new dt */
app->man->dt = tstop - tstart;

/* Set up a new matrix and solver and store in app */
if(A_idx == -1.0){

A_idx = i;
app->nA++;
app->dt_A[A_idx] = tstop-tstart;

setUpImplicitMatrix(app->man);
app->A[A_idx] = app->man->A;

setUpStructSolver(app->man, u->x, u->x);
app->solver[A_idx] = app->man->solver;

}

/* Time integration to next time point: Solve the system Ax = b.

* First, "trick" the user’s manager with the right matrix and solver */
app->man->A = app->A[A_idx];
app->man->solver = app->solver[A_idx];
...
/* Take step */
take_step(app->man, u->x, tstart, tstop);
...
return 0;

}

2. There are other functions, Init, Clone, Free, Sum, SpatialNorm, Access, BufSize, BufPack and BufUnpack,
which also must be written. These functions are all simple for this example, as for the case of The Simplest
Example. All we do here is standard operations on a spatial vector such as initialize, clone, take an inner-product,
pack, etc... We refer the reader to ex-03.c.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

3.5 Two-Dimensional Heat Equation 23

Running XBraid for this Example

To initialize and run XBraid, the procedure is similar to The Simplest Example. Only here, we have to both initialize
the user code and XBraid. The code that is specific to the user’s application comes directly from the existing serial
simulation code. If you compare ex-03-serial.c and ex-03.c, you will see that most of the code setting up the
user’s data structures and defining the wrapper functions are simply lifted from the serial simulation.

Taking excerpts from the function main() in ex-03.c, we first initialize the user’s simulation manager with code like

...
app->man->px = 1; /* my processor number in the x-direction */
app->man->py = 1; /* my processor number in the y-direction */

/* px*py=num procs in space */
app->man->nx = 17; /* number of points in the x-dim */
app->man->ny = 17; /* number of points in the y-dim */
app->man->nt = 32; /* number of time steps */
...

We also define default XBraid parameters with code like

...
max_levels = 15; /* Max levels for XBraid solver */
min_coarse = 3; /* Minimum possible coarse grid size */
nrelax = 1; /* Number of CF relaxation sweeps on all levels */
...

The XBraid app must also be initialized with code like

...
app->comm = comm;
app->tstart = tstart;
app->tstop = tstop;
app->ntime = ntime;

Then, the data structure definitions and wrapper routines are passed to XBraid.

braid_Core core;
braid_Init(MPI_COMM_WORLD, comm, tstart, tstop, ntime, app,

my_Step, my_Init, my_Clone, my_Free, my_Sum, my_SpatialNorm,
my_Access, my_BufSize, my_BufPack, my_BufUnpack, &core);

Then, XBraid options are set with calls like

...
braid_SetPrintLevel(core, 1);
braid_SetMaxLevels(core, max_levels);
braid_SetNRelax(core, -1, nrelax);
...

Then, the simulation is run.

braid_Drive(core);

Then, we clean up.

braid_Destroy(core);

Finally, to run ex-03, type

ex-03 -help

As a simple example, try the following.

mpirun -np 8 ex-03 -pgrid 2 2 2 -nt 256

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

24 CONTENTS

3.5.1 Scaling Study with this Example

Here, we carry out a simple strong scaling study for this example. The "time stepping" data set represents sequential
time stepping and was generated using examples/ex-03-serial. The time-parallel data set was generated
using examples/ex-03. The problem setup is as follows.

• Backwards Euler is used as the time stepper. This is the only time stepper supported by ex-03.

• We used a Linux cluster with 4 cores per node, a Sandybridge Intel chipset, and a fast Infiniband interconnect.

• The space-time problem size was 1292×16,192 over the unit cube [0,1]× [0,1]× [0,1] .

• The coarsening factor was m = 16 on the finest level and m = 2 on coarser levels.

• Since 16 processors optimized the serial time stepping approach, 16 processors in space are also used for
the XBraid experiments. So for instance 512 processrs in the plot corresponds to 16 processors in space and
32 processors in time, 16 ∗ 32 = 512. Thus, each processor owns a space-time hypercube of (1292/16)×
(16,192/32). See Parallel decomposition and memory for a depiction of how XBraid breaks the problem up.

• Various relaxation and V and F cycling strategies are experimented with.

– V-cycle, FCF denotes V-cycles and FCF-relaxation on each level.

– V-cycle, F-FCF denotes V-cycles and F-relaxation on the finest level and FCF-relaxation on all coarser
levels.

– F-cycle, F denotes F-cycles and F-relaxation on each level.

• The initial guess at time values for t > 0 is zero, which is typical.

• The halting tolerance corresponds to a discrete L2-norm and was

tol =
10−8

√
(hx)2ht

,

where hx and ht are the spatial and temporal grid spacings, respectively.
This corresponds to passing tol to braid_SetAbsTol, passing 2 to braid_SetTemporalNorm and defining braid_-
PtFcnSpatialNorm to be the standard Euclidean 2-norm. All together, this appropriately scales the space-time
residual in way that is relative to the number of space-time grid points (i.e., it approximates the L2-norm).

To re-run this scaling study, a sample run string for ex-03 is

mpirun -np 64 ex-03 -pgrid 4 4 4 -nx 129 129 -nt 16129 -cf0 16 -cf 2 -nu 1 -use_rand 0

To re-run the baseline sequential time stepper, ex-03-serial, try

mpirun -np 64 ex-03-serial -pgrid 8 8 -nx 129 129 -nt 16129

For explanations of the command line parameters, type

ex-03-serial -help
ex-03 -help

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

3.5 Two-Dimensional Heat Equation 25

Regarding the performance, we can say

• The best speedup is 10x and this would grow if more processors were available.

• Although not shown, the iteration counts here are about 10-15 XBraid iterations. See Parallel Time
Integration with Multigrid for the exact iteration counts.

• At smaller core counts, serial time stepping is faster. But at about 256 processors, there is a crossover and
XBraid is faster.

• You can see the impact of the cycling and relaxation strategies discussed in Cycling and relaxation strategies.
For instance, even though V-cycle, F-FCF is a weaker relaxation strategy than V-cycle, FCF (i.e., the XBraid
convergence is slower), V-cycle, F-FCF has a faster time to solution than V-cycle, FCF because each cycle is
cheaper.

• In general, one level of aggressive coarsening (here by a factor 16) followed by slower coarsening was found to
be best on this machine.

Achieving the best speedup can require some tuning, and it is recommended to read Parallel Time
Integration with Multigrid where this 2D heat equation example is explored in much more detail.

Running and Testing XBraid

The best overall test for XBraid, is to set the maximum number of levels to 1 (see braid_SetMaxLevels) which will carry
out a sequential time stepping test. Take the output given to you by your Access function and compare it to output from
a non-XBraid run. Is everything OK? Once this is complete, repeat for multilevel XBraid, and check that the solution is
correct (that is, it matches a serial run to within tolerance).

At a lower level, to do sanity checks of your data structures and wrapper routines, there are also XBraid test functions,
which can be easily run. The test routines also take as arguments the app structure, spatial communicator comm_x,
a stream like stdout for test output and a time step size dt to test. After these arguments, function pointers to wrapper
routines are the rest of the arguments. Some of the tests can return a boolean variable to indicate correctness.

/* Test init(), access(), free() */
braid_TestInitAccess(app, comm_x, stdout, dt, my_Init, my_Access, my_Free);

/* Test clone() */
braid_TestClone(app, comm_x, stdout, dt, my_Init, my_Access, my_Free, my_Clone);

/* Test sum() */
braid_TestSum(app, comm_x, stdout, dt, my_Init, my_Access, my_Free, my_Clone, my_Sum);

/* Test spatialnorm() */
correct = braid_TestSpatialNorm(app, comm_x, stdout, dt, my_Init, my_Free, my_Clone,

my_Sum, my_SpatialNorm);

/* Test bufsize(), bufpack(), bufunpack() */
correct = braid_TestBuf(app, comm_x, stdout, dt, my_Init, my_Free, my_Sum, my_SpatialNorm,

my_BufSize, my_BufPack, my_BufUnpack);

/* Test coarsen and refine */
correct = braid_TestCoarsenRefine(app, comm_x, stdout, 0.0, dt, 2*dt, my_Init,

my_Access, my_Free, my_Clone, my_Sum, my_SpatialNorm,
my_CoarsenInjection, my_Refine);

correct = braid_TestCoarsenRefine(app, comm_x, stdout, 0.0, dt, 2*dt, my_Init,
my_Access, my_Free, my_Clone, my_Sum, my_SpatialNorm,
my_CoarsenBilinear, my_Refine);

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

https://computation.llnl.gov/project/linear_solvers/pubs/mgritPaper-2014.pdf
https://computation.llnl.gov/project/linear_solvers/pubs/mgritPaper-2014.pdf
https://computation.llnl.gov/project/linear_solvers/pubs/mgritPaper-2014.pdf
https://computation.llnl.gov/project/linear_solvers/pubs/mgritPaper-2014.pdf

26 CONTENTS

More Complicated Examples

We have Fortran90 and C++ interfaces. See examples/ex-01f.f90, braid.hpp and the various C++ examples
in drivers/drive-∗∗.cpp. For discussion of more complex problems please see our project publications
website for our recent publications concerning some of these varied applications.

4 Building XBraid

• Copyright information and licensing restrictions can be found in the files COPYRIGHT and LICENSE.

• To specify the compilers, flags and options for your machine, edit makefile.inc. For now, we keep it simple and
avoid using configure or cmake.

• To make the library, libbraid.a,
$ make

• To make the examples
$ make all

• The makefile lets you pass some parameters like debug with
$ make debug=yes

or
$ make all debug=yes

It would also be easy to add additional parameters, e.g., to compile with insure.

• To set compilers and library locations, look in makefile.inc where you can set up an option for your machine to
define simple stuff like
CC = mpicc
MPICC = mpicc
MPICXX = mpiCC
LFLAGS = -lm

5 Examples: compiling and running

Type

ex-* -help

for instructions on how to run any example.

To run the examples, type

mpirun -np 4 ex-* [args]

1. ex-01 is the simplest example. It implements a scalar ODE and can be compiled and run with no outside depen-
dencies. See Section (The Simplest Example) for more discussion of this example. There are four versions of
this example,

• ex-01.c: simplest possible implementation, start reading this example first

• ex-01-expanded.c: same as ex-01.c but adds more XBraid features

• ex-01-expanded-bdf2.c: same as ex-01-expanded.c, but uses BDF2 instead of backward Euler

• ex-01-expanded-f.f90: same as ex-01-expanded.c, but implemented in f90

2. ex-02 implements the 1D heat equation on a regular grid, using a very simple implementation. This is the next
example to read after the various ex-01 cases.

3. ex-03 implements the 2D heat equation on a regular grid. You must have hypre installed and these variables in
examples/Makefile set correctly

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

http://computation.llnl.gov/projects/parallel-time-integration-multigrid/publications
http://computation.llnl.gov/projects/parallel-time-integration-multigrid/publications
https://computation.llnl.gov/project/linear_solvers/software.php

6 Coding Style 27

HYPRE_DIR = ../../linear_solvers/hypre
HYPRE_FLAGS = -I$(HYPRE_DIR)/include
HYPRE_LIB = -L$(HYPRE_DIR)/lib -lHYPRE

Only implicit time stepping (backward Euler) is supported. See Section (Two-Dimensional Heat Equation) for
more discussion of this example. The driver

drivers/drive-diffusion

is a more sophisticated version of this simple example that supports explicit time stepping and spatial coarsening.

6 Coding Style

Code should follow the ellemtel style. See braid/misc/sample_c_code.c, and for emacs and vim style files, see
braid/misc/sample.vimrc, and braid/misc/sample.emacs.

7 Using Doxygen

To build the documentation, doxygen must be version 1.8 or greater. XBraid documentation uses a markdown syntax
both in source file comments and in ∗.md files.

To make the documentation,

$ make user_manual
$ acroread user_manual.pdf

or to make a more extensive reference manual for developers,

$ make developer_manual
$ acroread developer_manual.pdf

Developers can run doxygen from a precompiled binary, which may or may not work for your machine,

/usr/casc/hypre/braid/share/doxygen/bin/doxygen

or build doxygen from

/usr/casc/hypre/braid/share/doxygen.tgz

• Compiling doxygen requires a number of dependencies like Bison, GraphViz and Flex. Configure will tell you
what you’re missing

• Unpack doxygen.tgz, then from the doxygen directory
./configure --prefix some_dir_in_your_path
make
make install

Documentation Strategy

• The doxygen comments are to be placed in the header files.

• A sample function declaration using the documenation approach using markdown (including typesetting equa-
tions) is in braid.h for the function braid_Init()

• A sample structure documentation is in _braid.h for _braid_Core_struct

• Descriptors for files can also be added, as at the top of braid.h

• The Doxygen manual is at http://www.stack.nl/∼dimitri/doxygen/manual/index.html

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

http://www.stack.nl/~dimitri/doxygen/manual/markdown.html
http://www.stack.nl/~dimitri/doxygen/manual/index.html

28 CONTENTS

XBraid Doxygen details

The user and developer manuals are ultimately produced by Latex. The formatting of the manuals is configured accord-
ing to the following.

• docs/local_doxygen.sty

– Latex style file used

• docs/user_manual_header.tex

– User manual title page and header info

• docs/developer_manual_header.tex

– Developer manual title page and header info

• ∗.md

– Any file ending in .md is extra documentation in markdown format, like Introduction.md or the various
Readme.md files in each directory. This material can be read in plain-text or when it’s compiled by Doxygen
and Latex.

• docs/user_manual.conf

– Doxygen configure file for the user manual

– The FILE_NAMES tag is a filter to only include the user interface routines in braid.h

– The INPUT tag orders the processing of the files and hence the section ordering

• docs/reference_manual.conf

– Same as user_manual.conf, but the FILE_NAMES tag does not exclude any file from processing.

• docs/img

– Contains the images

• To regenerate generic doxygen latex files, type
$ doxygen -w latex header.tex footer.tex doxygen.sty doxy.conf

If this is done, then the .conf file must be changed to use the new header file and to copy the local_doxygen.sty
file to the latex directory.

8 Regression Testing

Overview

• There are three levels in the testing framework. At each level, the fine-grain output from a testscript.sh is
dumped into a directory testscript.dir, with the standard out and error stored in testscript.out and
testscript.err. The test testscript.sh passes if testscript.err is empty (nothing is written to
standard error).

• Basic instructions: run a test with a command like
$./test.sh diffusion2D.sh

Then, see if diffusion2D.err is of size 0. If it is not, look at it’s contents to see which test failed.

• To add a new regression test, create a new lowest level script like diffusion2D.sh and then call it from a
machine script at level 2.

• Regression tests should be run before pushing code. It is recommended to run the basic (lowest level) tests like
diffusion2d.sh or machine test like machine-tux.sh

Lowest Level Test Scripts

As an example, here we look at one of the lowest level tests, the diffusion2d test.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

8 Regression Testing 29

Files used:

• test.sh

• diffusion2D.sh

• diffusion2D.saved

Output:

• diffusion2D.dir

• diffusion2D.err

• diffusion2D.out

At this level, we execute

$./test.sh diffusion2D.sh

or just

$./diffusion2D.sh

The script diffusion2D.sh must create diffusion2D.dir and place all fine-grain test output in this direc-
tory. test.sh captures the standard out and error in diffusion2D.out and diffusion2D.err. The test
diffusion2D.sh passes if diffusion2D.err is empty (nothing is written to standard error).

The strategy for low level scripts like diffusion2D.sh is to run a sequence of tests such as

$ mpirun -np 1 ../examples/ex-02 -pgrid 1 1 1 -nt 256
$ mpirun -np 4 ../examples/ex-02 -pgrid 1 1 4 -nt 256

The output from the first mpirun test must then be written to files named

diffusion2D.dir/unfiltered.std.out.0
diffusion2D.dir/std.out.0
diffusion2D.dir/std.err.0

and the second mpirun test similarly writes the files

diffusion2D.dir/unfiltered.std.out.1
diffusion2D.dir/std.out.1
diffusion2D.dir/std.err.1

Subsequent tests are written to higher numbered files. The unfiltered.std.out.num file contains all of the
standard out for the test, while std.out.num contains filtered output (usually from a grep command) and could
contain the output lines such as iteration numbers and number of levels. The file std.err.num contains the standard
error output.

To see if a test ran correctly, std.out.num is compared to saved output in diffusion2D.saved. The file
diffusion2D.saved contains the concatenated output from all the tests that diffusion2D.sh will run. For
the above example, this file could look like

Begin Test 1
number of levels = 6
iterations = 16
Begin Test 2
number of levels = 4
iterations = 8

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

30 CONTENTS

This saved output is split into an individual file for each test (using # Begin Test as a delimiter) and these new files
are placed in diffusion2D.dir. So, after running these two regression tests, diffusion2D.dir will contain

diffusion2D.saved.0
diffusion2D.saved.1
unfiltered.std.out.0
std.out.0
std.err.0
unfiltered.std.out.1
std.out.1
std.err.1

An individual test has passed if std.err.num is empty. The file std.err.num contains a diff between
diffusion2D.save.num and std.out.num (the diff ignores whitespace and the delimiter # Begin Test).

Last in the directy where you ran ./test.sh diffusion2d.sh, the files

diffusion2D.err
diffusion2D.out

will be created. If all the tests passed then diffusion2D.err will be empty. Otherwise, it will contain the filenames
of the std.err.num files that are non-empty, representing failed tests.

Level 2 Scripts

As an example, here we look at one of the Level 2 tests, the machine-tux test that Jacob runs.

Files used:

• machine-tux.sh

Output:

• machine-tux.dir

• machine-tux.err (only generated if autotest.sh is used to run machine-tux.sh)

• machine-tux.out (only generated if autotest.sh is used to run machine-tux.sh)

At this level, we execute

./machine-tux.sh

The autotest framework (autotest.sh) calls machine scripts in this way. Each machine script should be
short and call lower-level scripts like diffusion2D.sh. The output from lower-level scripts must be moved to
machine-tux.dir like this:

$./test.sh diffusion2D.sh
$ mv -f diffusion2D.dir machine-tux.dir
$ mv -f diffusion2D.out machine-tux.dir
$ mv -f diffusion2D.err machine-tux.dir

All error files from diffusion2D.sh will be placed in machine-tux.dir, so if machine-tux.dir has all
zero ∗.err files, then the machine-tux test has passed.

To begin testing on a new machine, like vulcan, add a new machine script similar to machine-tux.sh and change
autotest.sh to recognize and run the new machine test. To then use autotest.sh with the machine script,
you’ll have to set up a passwordless connection from the new machine to

/usr/casc/hypre/braid/testing

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

8 Regression Testing 31

Level 3 Script

Here we look at the highest level, where autotest.sh runs all of the level 2 machine tests and emails out the results.

Files used:

• autotest.sh

Output:

• test/autotest_finished

• /usr/casc/hypre/braid/testing/AUTOTEST-20∗∗.∗∗.∗∗-Day
• Email to recipients listed in autotest.sh

At the highest level sits autotest.sh and is called automatically as a cronjob. If you just want to check to see if
you’ve broken anything with a commit, just use lower level scripts.

There are four steps to running autotest.

• Step 1
$./autotesh.sh -init

will do a pull from master for the current working repository and recompile Braid. The autotest output files
(autotest.err and autotest.out) and the output directory (autotest_finished) are initialized.

• Step 2
$./autotest.sh -tux343

will run the autotests on tux343. This command will look for a machine-tux.sh, and execute it, moving the
resulting

machine-tux.dir
machine-tux.err
machine-tux.out

into test/autotest_finished.

• Step 3
$./autotest.sh -remote-copy

will copy /test/autotest_finished/∗ to a time-stamped directory such as
/usr/casc/hypre/braid/testing/AUTOTEST-2013.11.18-Mon
Alternatively,

$./autotesh.sh -remote-copy tux343

will ssh through tux343 to copy to /usr/casc. Multiple machines may independently be running regression
tests and then copy to AUTOTEST-2013.11.18-Mon.

• Step 4
$./autotest.sh -summary-email

will email everyone listed in the $email_list (an autotest.sh variable)

Cronfile

To add entries to your crontab, First, put your new cronjob lines into cronfile. Then see what you already have in
your crontab file with

$ crontab -l

Next, append to cronfile whatever you already have

$ crontab -l >> cronfile

Finally, tell crontab to use your cronfile

$ crontab cronfile

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

32 CONTENTS

Then make sure it took affect with

$ crontab -l

Crontab entry format uses ’∗’ to mean "every" and ’∗/m’ to mean "every m-th". The first five entries on each line
correspond respectively to:

• minute (0-56)

• hour (0-23)

• day of month (1-31)

• month (1-12)

• day of week (0-6)(0=Sunday)

Jacob’s crontab (on tux343):

00 01 * * * source /etc/profile; source $HOME/.bashrc; cd $HOME/joint_repos/braid/test; ./autotest.sh -init
10 01 * * * source /etc/profile; source $HOME/.bashrc; cd $HOME/joint_repos/braid/test; ./autotest.sh -tux343
40 01 * * * source /etc/profile; source $HOME/.bashrc; cd $HOME/joint_repos/braid/test; ./autotest.sh -remote-copy
50 01 * * * source /etc/profile; source $HOME/.bashrc; cd $HOME/joint_repos/braid/test; ./autotest.sh -summary-email
00 02 * * * source /etc/profile; source $HOME/.bashrc; cd $HOME/joint_repos/braid/test; ./autotest.sh -create-tarball

9 Drivers: compiling and running

Type

drive-* -help

for instructions on how to run any driver.

To run the examples, type

mpirun -np 4 drive-* [args]

1. drive-diffusion-2D implements the 2D heat equation on a regular grid. You must have hypre installed and these
variables in examples/Makefile set correctly

HYPRE_DIR = ../../linear_solvers/hypre
HYPRE_FLAGS = -I$(HYPRE_DIR)/include
HYPRE_LIB = -L$(HYPRE_DIR)/lib -lHYPRE

This driver also support spatial coarsening and explicit time stepping. This allows you to use explicit time stepping
on each Braid level, regardless of time step size.

2. drive-burgers-1D implements Burger’s equation (and also linear advection) in 1D using forward or backward Euler
in time and Lax-Friedrichs in space. Spatial coarsening is supported, allowing for stable time stepping on coarse
time-grids.
See also viz-burgers.py for visualizing the output.

3. drive-lorenz implements the Lorenz equation, with it’s trademark attractors. This problem has not been re-
searched very extensively, and XBraid’s behavior is not yet well understood. Convergence stagnates, but is
the solution "good enough" from a statistical point-of-view?
See also viz-lorenz.py for visualizing the output.

4. drive-diffusion is a sophisticated test bed for finite element discretizations of the heat equation. It relies on the
mfem package to create general finite element discretizations for the spatial problem. Other packages must be
installed in this order.

• Unpack and install Metis

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

https://computation.llnl.gov/project/linear_solvers/software.php
http://mfem.org
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

10 Module Index 33

• Unpack and install hypre

• Unpack mfem. Then make sure to set these variables correctly in the mfem Makefile:
USE_METIS_5 = YES
HYPRE_DIR = where_ever_linear_solvers_is/hypre

• Make the parallel version of mfem first by typing
make parallel

• Make GLVIS. Set these variables in the glvis makefile
MFEM_DIR = mfem_location
MFEM_LIB = -L$(MFEM_DIR) -lmfem

• Go to braid/examples and set these Makefile variables,
METIS_DIR = ../../metis-5.1.0/lib
MFEM_DIR = ../../mfem
MFEM_FLAGS = -I$(MFEM_DIR)
MFEM_LIB = -L$(MFEM_DIR) -lmfem -L$(METIS_DIR) -lmetis

then type
make drive-diffusion

• To run drive-diffusion and glvis, open two windows. In one, start a glvis session
./glvis

Then, in the other window, run drive-diffusion
mpirun -np ... drive-diffusion [args]

Glvis will listen on a port to which drive-diffusion will dump visualization information.

5. The other drive-.cpp files use MFEM to implement other PDEs

• drive-adv-diff-DG: implements advection(-diffusion) with a discontinuous Galerkin discretization. This driver
is under developement.

• drive-diffusion-1D-moving-mesh: implements the 1D heat equation, but with a moving mesh that adapts to
the forcing function so that the mesh equidistributes the arc-length of the solution.

• drive-diffusion-1D-moving-mesh-serial: implements a serial time-stepping version of the above problem.

• drive-pLaplacian: implements the 2D the p-Laplacian (nonlinear diffusion).

• drive-diffusion-ben: implements the 2D/3D diffusion equation with time-dependent coefficients. This is
essentially equivalent to drive-diffusion, and could be removed, but we’re keeping it around because it
implements linear diffusion in the same way that the p-Laplacian driver implemented nonlinear diffusion.
This makes it suitable for head-to-head timings.

• drive-lin-elasticity: implements time-dependent linearized elasticity and is under development.

• drive-nonlin-elasticity: implements time-dependent nonlinear elasticity and is under development.

10 Module Index

10.1 Modules

Here is a list of all modules:

Fortran 90 interface options 34

Error Codes 36

User-written routines 37

User interface routines 40

General Interface routines 41

XBraid status structures 50

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

https://computation.llnl.gov/project/linear_solvers/software.php
http://mfem.org
http://glvis.org

34 CONTENTS

XBraid status routines 51

Inherited XBraid status routines 58

XBraid status macros 61

XBraid test routines 62

11 Data Structure Index

11.1 Data Structures

Here are the data structures with brief descriptions:

_braid_CommHandle 67

_braid_Core 67

_braid_Grid 75

12 File Index

12.1 File List

Here is a list of all files with brief descriptions:

_braid.h
Define headers for developer routines 77

braid.h
Define headers for user interface routines 84

braid_defs.h
Definitions of types, error flags, etc.. 86

braid_status.h
Define headers for XBraid status structures and headers for the user functions allowing the user
to get/set status structure values 88

braid_test.h
Define headers for XBraid test routines 90

13 Module Documentation

13.1 Fortran 90 interface options

Macros

• #define braid_FMANGLE 1
• #define braid_Fortran_SpatialCoarsen 0

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.1 Fortran 90 interface options 35

• #define braid_Fortran_Residual 1
• #define braid_Fortran_TimeGrid 1

13.1.1 Detailed Description

Allows user to manually, at compile-time, turn on Fortran 90 interface options

13.1.2 Macro Definition Documentation

13.1.2.1 #define braid_FMANGLE 1

Define Fortran name-mangling schema, there are four supported options, see braid_F90_iface.c

13.1.2.2 #define braid_Fortran_Residual 1

Turn on the optional user-defined residual function

13.1.2.3 #define braid_Fortran_SpatialCoarsen 0

Turn on the optional user-defined spatial coarsening and refinement functions

13.1.2.4 #define braid_Fortran_TimeGrid 1

Turn on the optional user-defined time-grid function

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

36 CONTENTS

13.2 Error Codes

Macros

• #define braid_INVALID_RNORM -1
• #define braid_ERROR_GENERIC 1 /∗ generic error ∗/
• #define braid_ERROR_MEMORY 2 /∗ unable to allocate memory ∗/
• #define braid_ERROR_ARG 4 /∗ argument error ∗/

13.2.1 Detailed Description

13.2.2 Macro Definition Documentation

13.2.2.1 #define braid_ERROR_ARG 4 /∗ argument error ∗/

13.2.2.2 #define braid_ERROR_GENERIC 1 /∗ generic error ∗/

13.2.2.3 #define braid_ERROR_MEMORY 2 /∗ unable to allocate memory ∗/

13.2.2.4 #define braid_INVALID_RNORM -1

Value used to represent an invalid residual norm

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.3 User-written routines 37

13.3 User-written routines

Typedefs

• typedef struct _braid_App_struct ∗ braid_App
• typedef struct

_braid_Vector_struct ∗ braid_Vector
• typedef braid_Int(∗ braid_PtFcnStep)(braid_App app, braid_Vector ustop, braid_Vector fstop, braid_Vector u,

braid_StepStatus status)
• typedef braid_Int(∗ braid_PtFcnInit)(braid_App app, braid_Real t, braid_Vector ∗u_ptr)
• typedef braid_Int(∗ braid_PtFcnClone)(braid_App app, braid_Vector u, braid_Vector ∗v_ptr)
• typedef braid_Int(∗ braid_PtFcnFree)(braid_App app, braid_Vector u)
• typedef braid_Int(∗ braid_PtFcnSum)(braid_App app, braid_Real alpha, braid_Vector x, braid_Real beta, braid-

_Vector y)
• typedef braid_Int(∗ braid_PtFcnSpatialNorm)(braid_App app, braid_Vector u, braid_Real ∗norm_ptr)
• typedef braid_Int(∗ braid_PtFcnAccess)(braid_App app, braid_Vector u, braid_AccessStatus status)
• typedef braid_Int(∗ braid_PtFcnBufSize)(braid_App app, braid_Int ∗size_ptr, braid_BufferStatus status)
• typedef braid_Int(∗ braid_PtFcnBufPack)(braid_App app, braid_Vector u, void ∗buffer, braid_BufferStatus status)
• typedef braid_Int(∗ braid_PtFcnBufUnpack)(braid_App app, void ∗buffer, braid_Vector ∗u_ptr, braid_BufferStatus

status)
• typedef braid_Int(∗ braid_PtFcnResidual)(braid_App app, braid_Vector ustop, braid_Vector r, braid_StepStatus

status)
• typedef braid_Int(∗ braid_PtFcnSCoarsen)(braid_App app, braid_Vector fu, braid_Vector ∗cu_ptr, braid_-

CoarsenRefStatus status)
• typedef braid_Int(∗ braid_PtFcnSRefine)(braid_App app, braid_Vector cu, braid_Vector ∗fu_ptr, braid_Coarsen-

RefStatus status)
• typedef braid_Int(∗ braid_PtFcnSInit)(braid_App app, braid_Real t, braid_Vector ∗u_ptr)
• typedef braid_Int(∗ braid_PtFcnSClone)(braid_App app, braid_Vector u, braid_Vector ∗v_ptr)
• typedef braid_Int(∗ braid_PtFcnSFree)(braid_App app, braid_Vector u)
• typedef braid_Int(∗ braid_PtFcnTimeGrid)(braid_App app, braid_Real ∗ta, braid_Int ∗ilower, braid_Int ∗iupper)

13.3.1 Detailed Description

These are all user-written data structures and routines. There are two data structures (braid_App and braid_Vector) for
the user to define. And, there are a variety of function interfaces (defined through function pointer declarations) that the
user must implement.

13.3.2 Typedef Documentation

13.3.2.1 typedef struct _braid_App_struct∗ braid_App

This holds a wide variety of information and is global in that it is passed to every function. This structure holds
everything that the user will need to carry out a simulation. For a simple example, this could just hold the global MPI
communicator and a few values describing the temporal domain.

13.3.2.2 typedef braid_Int(∗ braid_PtFcnAccess)(braid_App app,braid_Vector u,braid_AccessStatus status)

Gives user access to XBraid and to the current vector u at time t. Most commonly, this lets the user write the vector
to screen, file, etc... The user decides what is appropriate. Note how you are told the time value t of the vector u and
other information in status. This lets you tailor the output, e.g., for only certain time values at certain XBraid iterations.
Querrying status for such information is done through braid_AccessStatusGet∗∗(..) routines.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

38 CONTENTS

The frequency of XBraid’s calls to access is controlled through braid_SetAccessLevel. For instance, if access_level
is set to 3, then access is called every XBraid iteration and on every XBraid level. In this case, querrying status to
determine the current XBraid level and iteration will be useful. This scenario allows for even more detailed tracking of
the simulation.

Eventually, access will be broadened to allow the user to steer XBraid.

13.3.2.3 typedef braid_Int(∗ braid_PtFcnBufPack)(braid_App app,braid_Vector u,void ∗buffer,braid_BufferStatus status)

This allows XBraid to send messages containing braid_Vectors. This routine packs a vector u into a void ∗ buffer for
MPI. The status structure holds information regarding the message. This is accessed through the braid_BufferStatus-
Get∗∗(..) routines. Optionally, the user can set the message size through the status structure.

13.3.2.4 typedef braid_Int(∗ braid_PtFcnBufSize)(braid_App app,braid_Int ∗size_ptr,braid_BufferStatus status)

This routine tells XBraid message sizes by computing an upper bound in bytes for an arbitrary braid_Vector. This size
must be an upper bound for what BufPack and BufUnPack will assume.

13.3.2.5 typedef braid_Int(∗ braid_PtFcnBufUnpack)(braid_App app,void ∗buffer,braid_Vector ∗u_ptr,braid_BufferStatus
status)

This allows XBraid to receive messages containing braid_Vectors. This routine unpacks a void ∗ buffer from MPI into a
braid_Vector. The status structure, contains information conveying the type of message inside the buffer. This can be
accessed through the braid_BufferStatusGet∗∗(..) routines.

13.3.2.6 typedef braid_Int(∗ braid_PtFcnClone)(braid_App app,braid_Vector u,braid_Vector ∗v_ptr)

Clone u into v_ptr

13.3.2.7 typedef braid_Int(∗ braid_PtFcnFree)(braid_App app,braid_Vector u)

Free and deallocate u

13.3.2.8 typedef braid_Int(∗ braid_PtFcnInit)(braid_App app,braid_Real t,braid_Vector ∗u_ptr)

Initializes a vector u_ptr at time t

13.3.2.9 typedef braid_Int(∗ braid_PtFcnResidual)(braid_App app,braid_Vector ustop,braid_Vector r,braid_StepStatus
status)

This function (optional) computes the residual r at time tstop. On input, r holds the value of u at tstart, and ustop is the
value of u at tstop. If used, set with braid_SetResidual.

Query the status structure with braid_StepStatusGetTstart(status, &tstart) and braid_StepStatusGetTstop(status,
&tstop) to get tstart and tstop.

13.3.2.10 typedef braid_Int(∗ braid_PtFcnSClone)(braid_App app,braid_Vector u,braid_Vector ∗v_ptr)

Shell clone (optional)

13.3.2.11 typedef braid_Int(∗ braid_PtFcnSCoarsen)(braid_App app,braid_Vector fu,braid_Vector
∗cu_ptr,braid_CoarsenRefStatus status)

Spatial coarsening (optional). Allows the user to coarsen when going from a fine time grid to a coarse time grid. This
function is called on every vector at each level, thus you can coarsen the entire space time domain. The action of this
function should match the braid_PtFcnSRefine function.

The user should query the status structure at run time with braid_CoarsenRefGet∗∗() calls in order to determine how

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.3 User-written routines 39

to coarsen. For instance, status tells you what the current time value is, and what the time step sizes on the fine and
coarse levels are.

13.3.2.12 typedef braid_Int(∗ braid_PtFcnSFree)(braid_App app,braid_Vector u)

Free the data of u, keep its shell (optional)

13.3.2.13 typedef braid_Int(∗ braid_PtFcnSInit)(braid_App app,braid_Real t,braid_Vector ∗u_ptr)

Shell initialization (optional)

13.3.2.14 typedef braid_Int(∗ braid_PtFcnSpatialNorm)(braid_App app,braid_Vector u,braid_Real ∗norm_ptr)

Carry out a spatial norm by taking the norm of a braid_Vector norm_ptr = || u || A common choice is the standard
Eucliden norm, but many other choices are possible, such as an L2-norm based on a finite element space. See braid_-
SetTemporalNorm for information on how the spatial norm is combined over time for a global space-time residual norm.
This global norm then controls halting.

13.3.2.15 typedef braid_Int(∗ braid_PtFcnSRefine)(braid_App app,braid_Vector cu,braid_Vector
∗fu_ptr,braid_CoarsenRefStatus status)

Spatial refinement (optional). Allows the user to refine when going from a coarse time grid to a fine time grid. This
function is called on every vector at each level, thus you can refine the entire space time domain. The action of this
function should match the braid_PtFcnSCoarsen function.

The user should query the status structure at run time with braid_CoarsenRefGet∗∗() calls in order to determine how
to coarsen. For instance, status tells you what the current time value is, and what the time step sizes on the fine and
coarse levels are.

13.3.2.16 typedef braid_Int(∗ braid_PtFcnStep)(braid_App app,braid_Vector ustop,braid_Vector fstop,braid_Vector
u,braid_StepStatus status)

Defines the central time stepping function that the user must write.

The user must advance the vector u from time tstart to tstop. The time step is taken assuming the right-hand-side vector
fstop at time tstop. The vector ustop may be the same vector as u (in the case where not all unknowns are stored). The
vector fstop is set to NULL to indicate a zero right-hand-side.

Query the status structure with braid_StepStatusGetTstart(status, &tstart) and braid_StepStatusGetTstop(status,
&tstop) to get tstart and tstop. The status structure also allows for steering. For example, braid_StepStatusSetR-
Factor(...) allows for setting a refinement factor, which tells XBraid to refine this time interval.

13.3.2.17 typedef braid_Int(∗ braid_PtFcnSum)(braid_App app,braid_Real alpha,braid_Vector x,braid_Real
beta,braid_Vector y)

AXPY, alpha x + beta y –> y

13.3.2.18 typedef braid_Int(∗ braid_PtFcnTimeGrid)(braid_App app,braid_Real ∗ta,braid_Int ∗ilower,braid_Int ∗iupper)

Set time values for temporal grid on level 0 (time slice per processor)

13.3.2.19 typedef struct _braid_Vector_struct∗ braid_Vector

This defines (roughly) a state vector at a certain time value. It could also contain any other information related to this
vector which is needed to evolve the vector to the next time value, like mesh information.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

40 CONTENTS

13.4 User interface routines

Modules

• General Interface routines
• XBraid status structures
• XBraid status routines
• Inherited XBraid status routines
• XBraid status macros

13.4.1 Detailed Description

These are all the user interface routines.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.5 General Interface routines 41

13.5 General Interface routines

Typedefs

• typedef struct _braid_Core_struct ∗ braid_Core

Functions

• braid_Int braid_Init (MPI_Comm comm_world, MPI_Comm comm, braid_Real tstart, braid_Real tstop, braid_-
Int ntime, braid_App app, braid_PtFcnStep step, braid_PtFcnInit init, braid_PtFcnClone clone, braid_PtFcnFree
free, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnAccess access, braid_PtFcnBuf-
Size bufsize, braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack bufunpack, braid_Core ∗core_ptr)

• braid_Int braid_Drive (braid_Core core)
• braid_Int braid_Destroy (braid_Core core)
• braid_Int braid_PrintStats (braid_Core core)
• braid_Int braid_SetMaxLevels (braid_Core core, braid_Int max_levels)
• braid_Int braid_SetSkip (braid_Core core, braid_Int skip)
• braid_Int braid_SetRefine (braid_Core core, braid_Int refine)
• braid_Int braid_SetMaxRefinements (braid_Core core, braid_Int max_refinements)
• braid_Int braid_SetTPointsCutoff (braid_Core core, braid_Int tpoints_cutoff)
• braid_Int braid_SetMinCoarse (braid_Core core, braid_Int min_coarse)
• braid_Int braid_SetAbsTol (braid_Core core, braid_Real atol)
• braid_Int braid_SetRelTol (braid_Core core, braid_Real rtol)
• braid_Int braid_SetNRelax (braid_Core core, braid_Int level, braid_Int nrelax)
• braid_Int braid_SetCFactor (braid_Core core, braid_Int level, braid_Int cfactor)
• braid_Int braid_SetMaxIter (braid_Core core, braid_Int max_iter)
• braid_Int braid_SetFMG (braid_Core core)
• braid_Int braid_SetNFMG (braid_Core core, braid_Int k)
• braid_Int braid_SetNFMGVcyc (braid_Core core, braid_Int nfmg_Vcyc)
• braid_Int braid_SetStorage (braid_Core core, braid_Int storage)
• braid_Int braid_SetTemporalNorm (braid_Core core, braid_Int tnorm)
• braid_Int braid_SetResidual (braid_Core core, braid_PtFcnResidual residual)
• braid_Int braid_SetFullRNormRes (braid_Core core, braid_PtFcnResidual residual)
• braid_Int braid_SetTimeGrid (braid_Core core, braid_PtFcnTimeGrid tgrid)
• braid_Int braid_SetSpatialCoarsen (braid_Core core, braid_PtFcnSCoarsen scoarsen)
• braid_Int braid_SetSpatialRefine (braid_Core core, braid_PtFcnSRefine srefine)
• braid_Int braid_SetPrintLevel (braid_Core core, braid_Int print_level)
• braid_Int braid_SetPrintFile (braid_Core core, const char ∗printfile_name)
• braid_Int braid_SetDefaultPrintFile (braid_Core core)
• braid_Int braid_SetAccessLevel (braid_Core core, braid_Int access_level)
• braid_Int braid_SplitCommworld (const MPI_Comm ∗comm_world, braid_Int px, MPI_Comm ∗comm_x, MPI_-

Comm ∗comm_t)
• braid_Int braid_SetShell (braid_Core core, braid_PtFcnSInit sinit, braid_PtFcnSClone sclone, braid_PtFcnSFree

sfree)
• braid_Int braid_GetNumIter (braid_Core core, braid_Int ∗niter_ptr)
• braid_Int braid_GetRNorms (braid_Core core, braid_Int ∗nrequest_ptr, braid_Real ∗rnorms)
• braid_Int braid_GetNLevels (braid_Core core, braid_Int ∗nlevels_ptr)
• braid_Int braid_GetSpatialAccuracy (braid_StepStatus status, braid_Real loose_tol, braid_Real tight_tol, braid_-

Real ∗tol_ptr)
• braid_Int braid_SetSeqSoln (braid_Core core, braid_Int seq_soln)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

42 CONTENTS

13.5.1 Detailed Description

These are general interface routines, e.g., routines to initialize and run a XBraid solver, or to split a communicator into
spatial and temporal components.

13.5.2 Typedef Documentation

13.5.2.1 typedef struct _braid_Core_struct∗ braid_Core

points to the core structure defined in _braid.h

13.5.3 Function Documentation

13.5.3.1 braid_Int braid_Destroy (braid_Core core)

Clean up and destroy core.

Parameters

core braid_Core (_braid_Core) struct

13.5.3.2 braid_Int braid_Drive (braid_Core core)

Carry out a simulation with XBraid. Integrate in time.

Parameters

core braid_Core (_braid_Core) struct

13.5.3.3 braid_Int braid_GetNLevels (braid_Core core, braid_Int ∗ nlevels_ptr)

After Drive() finishes, this returns the number of XBraid levels

Parameters

core braid_Core (_braid_Core) struct
nlevels_ptr output, holds the number of XBraid levels

13.5.3.4 braid_Int braid_GetNumIter (braid_Core core, braid_Int ∗ niter_ptr)

After Drive() finishes, this returns the number of iterations taken.

Parameters

core braid_Core (_braid_Core) struct
niter_ptr output, holds number of iterations taken

13.5.3.5 braid_Int braid_GetRNorms (braid_Core core, braid_Int ∗ nrequest_ptr, braid_Real ∗ rnorms)

After Drive() finishes, this returns XBraid residual history. If nrequest_ptr is negative, return the last nrequest_ptr
residual norms. If positive, return the first nrequest_ptr residual norms. Upon exit, nrequest_ptr holds the number of
residuals actually returned.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.5 General Interface routines 43

Parameters

core braid_Core (_braid_Core) struct
nrequest_ptr input/output, input: num requested resid norms, output: num actually returned

rnorms output, holds residual norm history array

13.5.3.6 braid_Int braid_GetSpatialAccuracy (braid_StepStatus status, braid_Real loose_tol, braid_Real tight_tol,
braid_Real ∗ tol_ptr)

Example function to compute a tapered stopping tolerance for implicit time stepping routines, i.e., a tolerance tol_ptr for
the spatial solves. This tapering only occurs on the fine grid.

This rule must be followed. The same tolerance must be returned over all processors, for a given XBraid and XBraid
level. Different levels may have different tolerances and the same level may vary its tolerance from iteration to iteration,
but for the same iteration and level, the tolerance must be constant.

This additional rule must be followed. The fine grid tolerance is never reduced (this is important for convergence)

On the fine level,the spatial stopping tolerance tol_ptr is interpolated from loose_tol to tight_tol based on the relationship
between rnorm / rnorm0 and tol. Remember when rnorm / rnorm0 < tol, XBraid halts. Thus, this function lets us have
a loose stopping tolerance while the Braid residual is still relatively large, and then we transition to a tight stopping
tolerance as the Braid residual is reduced.

If the user has not defined a residual function, tight_tol is always returned.

The loose_tol is always used on coarse grids, excepting the above mentioned residual computations.

This function will normally be called from the user’s step routine.

This function is also meant as a guide for users to develop their own routine.

Parameters

status Current XBraid step status
loose_tol Loosest allowed spatial solve stopping tol on fine grid
tight_tol Tightest allowed spatial solve stopping tol on fine grid

tol_ptr output, holds the computed spatial solve stopping tol

13.5.3.7 braid_Int braid_Init (MPI_Comm comm_world, MPI_Comm comm, braid_Real tstart, braid_Real tstop,
braid_Int ntime, braid_App app, braid_PtFcnStep step, braid_PtFcnInit init, braid_PtFcnClone clone,
braid_PtFcnFree free, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnAccess
access, braid_PtFcnBufSize bufsize, braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack bufunpack,
braid_Core ∗ core_ptr)

Create a core object with the required initial data.

This core is used by XBraid for internal data structures. The output is core_ptr which points to the newly created
braid_Core structure.

Parameters

comm_world Global communicator for space and time
comm Communicator for temporal dimension
tstart start time
tstop End time

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

44 CONTENTS

ntime Initial number of temporal grid values
app User-defined _braid_App structure
step User time stepping routine to advance a braid_Vector forward one step

init Initialize a braid_Vector on the finest temporal grid
clone Clone a braid_Vector

free Free a braid_Vector
sum Compute vector sum of two braid_Vectors

spatialnorm Compute norm of a braid_Vector, this is a norm only over space
access Allows access to XBraid and current braid_Vector
bufsize Computes size for MPI buffer for one braid_Vector

bufpack Packs MPI buffer to contain one braid_Vector
bufunpack Unpacks MPI buffer into a braid_Vector

core_ptr Pointer to braid_Core (_braid_Core) struct

13.5.3.8 braid_Int braid_PrintStats (braid_Core core)

Print statistics after a XBraid run.

Parameters

core braid_Core (_braid_Core) struct

13.5.3.9 braid_Int braid_SetAbsTol (braid_Core core, braid_Real atol)

Set absolute stopping tolerance.

Recommended option over relative tolerance

Parameters

core braid_Core (_braid_Core) struct
atol absolute stopping tolerance

13.5.3.10 braid_Int braid_SetAccessLevel (braid_Core core, braid_Int access_level)

Set access level for XBraid. This controls how often the user’s access routine is called.

• Level 0: Never call the user’s access routine

• Level 1: Only call the user’s access routine after XBraid is finished

• Level 2: Call the user’s access routine every iteration and on every level. This is during _braid_FRestrict, during
the down-cycle part of a XBraid iteration.

Default is level 1.

Parameters

core braid_Core (_braid_Core) struct
access_level desired access_level

13.5.3.11 braid_Int braid_SetCFactor (braid_Core core, braid_Int level, braid_Int cfactor)

Set the coarsening factor cfactor on grid level (level 0 is the finest grid). The default factor is 2 on all levels. To change
the default factor, use level = -1.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.5 General Interface routines 45

Parameters

core braid_Core (_braid_Core) struct
level level to set coarsening factor on

cfactor desired coarsening factor

13.5.3.12 braid_Int braid_SetDefaultPrintFile (braid_Core core)

Use default filename, braid_runtime.out for runtime print messages. This function is particularly useful for Fortran
codes, where passing filename strings between C and Fortran is troublesome. Level of printing is controlled by braid_-
SetPrintLevel.

Parameters

core braid_Core (_braid_Core) struct

13.5.3.13 braid_Int braid_SetFMG (braid_Core core)

Once called, XBraid will use FMG (i.e., F-cycles.

Parameters

core braid_Core (_braid_Core) struct

13.5.3.14 braid_Int braid_SetFullRNormRes (braid_Core core, braid_PtFcnResidual residual)

Set user-defined residual routine for computing full residual norm (all C/F points).

Parameters

core braid_Core (_braid_Core) struct
residual function pointer to residual routine

13.5.3.15 braid_Int braid_SetMaxIter (braid_Core core, braid_Int max_iter)

Set max number of multigrid iterations.

Parameters

core braid_Core (_braid_Core) struct
max_iter maximum iterations to allow

13.5.3.16 braid_Int braid_SetMaxLevels (braid_Core core, braid_Int max_levels)

Set max number of multigrid levels.

Parameters

core braid_Core (_braid_Core) struct
max_levels maximum levels to allow

13.5.3.17 braid_Int braid_SetMaxRefinements (braid_Core core, braid_Int max_refinements)

Set the max number of time grid refinement levels allowed.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

46 CONTENTS

Parameters

core braid_Core (_braid_Core) struct
max_refinements maximum refinement levels allowed

13.5.3.18 braid_Int braid_SetMinCoarse (braid_Core core, braid_Int min_coarse)

Set minimum allowed coarse grid size. XBraid stops coarsening whenever creating the next coarser grid will result in a
grid smaller than min_coarse. The maximum possible coarse grid size will be min_coarse∗coarsening_factor.

Parameters

core braid_Core (_braid_Core) struct
min_coarse minimum coarse grid size

13.5.3.19 braid_Int braid_SetNFMG (braid_Core core, braid_Int k)

Once called, XBraid will use FMG (i.e., F-cycles.

Parameters

core braid_Core (_braid_Core) struct
k number of initial F-cycles to do before switching to V-cycles

13.5.3.20 braid_Int braid_SetNFMGVcyc (braid_Core core, braid_Int nfmg_Vcyc)

Set number of V-cycles to use at each FMG level (standard is 1)

Parameters

core braid_Core (_braid_Core) struct
nfmg_Vcyc number of V-cycles to do each FMG level

13.5.3.21 braid_Int braid_SetNRelax (braid_Core core, braid_Int level, braid_Int nrelax)

Set the number of relaxation sweeps nrelax on grid level (level 0 is the finest grid). The default is 1 on all levels. To
change the default factor, use level = -1. One sweep is a CF relaxation sweep.

Parameters

core braid_Core (_braid_Core) struct
level level to set nrelax on

nrelax number of relaxations to do on level

13.5.3.22 braid_Int braid_SetPrintFile (braid_Core core, const char ∗ printfile_name)

Set output file for runtime print messages. Level of printing is controlled by braid_SetPrintLevel. Default is stdout.

Parameters

core braid_Core (_braid_Core) struct
printfile_name output file for XBraid runtime output

13.5.3.23 braid_Int braid_SetPrintLevel (braid_Core core, braid_Int print_level)

Set print level for XBraid. This controls how much information is printed to the XBraid print file (braid_SetPrintFile).

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.5 General Interface routines 47

• Level 0: no output

• Level 1: print typical information like a residual history, number of levels in the XBraid hierarchy, and so on.

• Level 2: level 1 output, plus debug level output.

Default is level 1.

Parameters

core braid_Core (_braid_Core) struct
print_level desired print level

13.5.3.24 braid_Int braid_SetRefine (braid_Core core, braid_Int refine)

Turn time refinement on (refine = 1) or off (refine = 0).

Parameters

core braid_Core (_braid_Core) struct
refine boolean, refine in time or not

13.5.3.25 braid_Int braid_SetRelTol (braid_Core core, braid_Real rtol)

Set relative stopping tolerance, relative to the initial residual. Be careful. If your initial guess is all zero, then the initial
residual may only be nonzero over one or two time values, and this will skew the relative tolerance. Absolute tolerances
are recommended.

Parameters

core braid_Core (_braid_Core) struct
rtol relative stopping tolerance

13.5.3.26 braid_Int braid_SetResidual (braid_Core core, braid_PtFcnResidual residual)

Set user-defined residual routine.

Parameters

core braid_Core (_braid_Core) struct
residual function pointer to residual routine

13.5.3.27 braid_Int braid_SetSeqSoln (braid_Core core, braid_Int seq_soln)

Set the initial guess to XBraid as the sequential time stepping solution. This is primarily for debugging. When used with
storage=-2, the initial residual should evaluate to exactly 0. The residual can also be 0 for other storage options if the
time stepping is exact, e.g., the implicit solve in Step is done to full precision.

The value seq_soln is a Boolean

• 0: The user’s Init() function initializes the state vector (default)

• 1: Sequential time stepping, with the user’s initial condition from Init(t=0) initializes the state vector

Default is 0.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

48 CONTENTS

Parameters

core braid_Core (_braid_Core) struct
seq_soln 1: Init with sequential time stepping soln, 0: Use user’s Init()

13.5.3.28 braid_Int braid_SetShell (braid_Core core, braid_PtFcnSInit sinit, braid_PtFcnSClone sclone,
braid_PtFcnSFree sfree)

Activate the shell vector feature, and set the various functions that are required :

• sinit : create a shell vector

• sclone : clone the shell of a vector

• sfree : free the data of a vector, keeping its shell This feature should be used with storage option = -1. It allows
the used to keep metadata on all points (including F-points) without storing the all vector everywhere. With these
options, the vectors are fully stored on C-points, but only the vector shell is kept on F-points.

13.5.3.29 braid_Int braid_SetSkip (braid_Core core, braid_Int skip)

Set whether to skip all work on the first down cycle (skip = 1). On by default.

Parameters

core braid_Core (_braid_Core) struct
skip boolean, whether to skip all work on first down-cycle

13.5.3.30 braid_Int braid_SetSpatialCoarsen (braid_Core core, braid_PtFcnSCoarsen scoarsen)

Set spatial coarsening routine with user-defined routine. Default is no spatial refinment or coarsening.

Parameters

core braid_Core (_braid_Core) struct
scoarsen function pointer to spatial coarsening routine

13.5.3.31 braid_Int braid_SetSpatialRefine (braid_Core core, braid_PtFcnSRefine srefine)

Set spatial refinement routine with user-defined routine. Default is no spatial refinment or coarsening.

Parameters

core braid_Core (_braid_Core) struct
srefine function pointer to spatial refinement routine

13.5.3.32 braid_Int braid_SetStorage (braid_Core core, braid_Int storage)

Sets the storage properties of the code.

Parameters

core braid_Core (_braid_Core) struct
storage store C-points (0), all points (1)

13.5.3.33 braid_Int braid_SetTemporalNorm (braid_Core core, braid_Int tnorm)

Sets XBraid temporal norm.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.5 General Interface routines 49

This option determines how to obtain a global space-time residual norm. That is, this decides how to combine the
spatial norms returned by braid_PtFcnSpatialNorm at each time step to obtain a global norm over space and time. It is
this global norm that then controls halting.

There are three options for setting tnorm. See section Halting tolerance for a more detailed discussion (in Introduction.-
md).

• tnorm=1: One-norm summation of spatial norms

• tnorm=2: Two-norm summation of spatial norms

• tnorm=3: Infinity-norm combination of spatial norms

The default choice is tnorm=2

Parameters

core braid_Core (_braid_Core) struct
tnorm choice of temporal norm

13.5.3.34 braid_Int braid_SetTimeGrid (braid_Core core, braid_PtFcnTimeGrid tgrid)

Set user-defined time points on finest grid

Parameters

core braid_Core (_braid_Core) struct
tgrid function pointer to time grid routine

13.5.3.35 braid_Int braid_SetTPointsCutoff (braid_Core core, braid_Int tpoints_cutoff)

Set the number of time steps, beyond with refinements stop. If num(tpoints) > tpoints_cutoff, then stop doing refine-
ments.

Parameters

core braid_Core (_braid_Core) struct
tpoints_cutoff cutoff for stopping refinements

13.5.3.36 braid_Int braid_SplitCommworld (const MPI_Comm ∗ comm_world, braid_Int px, MPI_Comm ∗ comm_x,
MPI_Comm ∗ comm_t)

Split MPI commworld into comm_x and comm_t, the spatial and temporal communicators. The total number of proces-
sors will equal Px∗Pt, there Px is the number of procs in space, and Pt is the number of procs in time.

Parameters

comm_world Global communicator to split
px Number of processors parallelizing space for a single time step

comm_x Spatial communicator (written as output)
comm_t Temporal communicator (written as output)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

50 CONTENTS

13.6 XBraid status structures

Typedefs

• typedef struct
_braid_Status_struct ∗ braid_Status

• typedef struct
_braid_AccessStatus_struct ∗ braid_AccessStatus

• typedef struct
_braid_StepStatus_struct ∗ braid_StepStatus

• typedef struct
_braid_CoarsenRefStatus_struct ∗ braid_CoarsenRefStatus

• typedef struct
_braid_BufferStatus_struct ∗ braid_BufferStatus

13.6.1 Detailed Description

Define the different status types.

13.6.2 Typedef Documentation

13.6.2.1 typedef struct _braid_AccessStatus_struct∗ braid_AccessStatus

AccessStatus structure which defines the status of XBraid at a given instant on some level during a run. The user
accesses it through braid_AccessStatusGet∗∗() functions. This is just a pointer to the braid_Status.

13.6.2.2 typedef struct _braid_BufferStatus_struct∗ braid_BufferStatus

The user’s bufpack, bufunpack and bufsize routines will receive a BufferStatus structure, which defines the status of
XBraid at a given buff (un)pack instance. The user accesses it through braid_BufferStatusGet∗∗() functions. This is just
a pointer to the braid_Status.

13.6.2.3 typedef struct _braid_CoarsenRefStatus_struct∗ braid_CoarsenRefStatus

The user coarsen and refine routines will receive a CoarsenRefStatus structure, which defines the status of XBraid at a
given instant of coarsening or refinement on some level during a run. The user accesses it through braid_CoarsenRef-
StatusGet∗∗() functions. This is just a pointer to the braid_Status.

13.6.2.4 typedef struct _braid_Status_struct∗ braid_Status

This is the main Status structure, that contains the properties of all the status. The user does not have access to this
structure, but only to the derived Status structures. This class is accessed only inside XBraid code.

13.6.2.5 typedef struct _braid_StepStatus_struct∗ braid_StepStatus

The user’s step routine routine will receive a StepStatus structure, which defines the status of XBraid at the given instant
for step evaluation on some level during a run. The user accesses it through braid_StepStatusGet∗∗() functions. This
is just a pointer to the braid_Status.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.7 XBraid status routines 51

13.7 XBraid status routines

Functions

• braid_Int braid_StatusGetT (braid_Status status, braid_Real ∗t_ptr)
• braid_Int braid_StatusGetTIndex (braid_Status status, braid_Int ∗idx_ptr)
• braid_Int braid_StatusGetIter (braid_Status status, braid_Int ∗iter_ptr)
• braid_Int braid_StatusGetLevel (braid_Status status, braid_Int ∗level_ptr)
• braid_Int braid_StatusGetNRefine (braid_Status status, braid_Int ∗nrefine_ptr)
• braid_Int braid_StatusGetNTPoints (braid_Status status, braid_Int ∗ntpoints_ptr)
• braid_Int braid_StatusGetResidual (braid_Status status, braid_Real ∗rnorm_ptr)
• braid_Int braid_StatusGetDone (braid_Status status, braid_Int ∗done_ptr)
• braid_Int braid_StatusGetTILD (braid_Status status, braid_Real ∗t_ptr, braid_Int ∗iter_ptr, braid_Int ∗level_ptr,

braid_Int ∗done_ptr)
• braid_Int braid_StatusGetWrapperTest (braid_Status status, braid_Int ∗wtest_ptr)
• braid_Int braid_StatusGetCallingFunction (braid_Status status, braid_Int ∗cfunction_ptr)
• braid_Int braid_StatusGetCTprior (braid_Status status, braid_Real ∗ctprior_ptr)
• braid_Int braid_StatusGetCTstop (braid_Status status, braid_Real ∗ctstop_ptr)
• braid_Int braid_StatusGetFTprior (braid_Status status, braid_Real ∗ftprior_ptr)
• braid_Int braid_StatusGetFTstop (braid_Status status, braid_Real ∗ftstop_ptr)
• braid_Int braid_StatusGetTpriorTstop (braid_Status status, braid_Real ∗t_ptr, braid_Real ∗ftprior_ptr, braid_Real
∗ftstop_ptr, braid_Real ∗ctprior_ptr, braid_Real ∗ctstop_ptr)

• braid_Int braid_StatusGetTstop (braid_Status status, braid_Real ∗tstop_ptr)
• braid_Int braid_StatusGetTstartTstop (braid_Status status, braid_Real ∗tstart_ptr, braid_Real ∗tstop_ptr)
• braid_Int braid_StatusGetTol (braid_Status status, braid_Real ∗tol_ptr)
• braid_Int braid_StatusGetRNorms (braid_Status status, braid_Int ∗nrequest_ptr, braid_Real ∗rnorms_ptr)
• braid_Int braid_StatusGetOldFineTolx (braid_Status status, braid_Real ∗old_fine_tolx_ptr)
• braid_Int braid_StatusSetOldFineTolx (braid_Status status, braid_Real old_fine_tolx)
• braid_Int braid_StatusSetTightFineTolx (braid_Status status, braid_Real tight_fine_tolx)
• braid_Int braid_StatusSetRFactor (braid_Status status, braid_Real rfactor)
• braid_Int braid_StatusSetRSpace (braid_Status status, braid_Real r_space)
• braid_Int braid_StatusGetMessageType (braid_Status status, braid_Int ∗messagetype_ptr)
• braid_Int braid_StatusSetSize (braid_Status status, braid_Real size)

13.7.1 Detailed Description

XBraid status structures and associated Get/Set routines are what tell the user the status of the simulation when their
routines (step, coarsen/refine, access) are called.

13.7.2 Function Documentation

13.7.2.1 braid_Int braid_StatusGetCallingFunction (braid_Status status, braid_Int ∗ cfunction_ptr)

Return flag indicating from which function the vector is accessed

Parameters

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

52 CONTENTS

status structure containing current simulation info
cfunction_ptr output, function number (0=FInterp, 1=FRestrict, 2=FRefine, 3=FAccess)

13.7.2.2 braid_Int braid_StatusGetCTprior (braid_Status status, braid_Real ∗ ctprior_ptr)

Return the coarse grid time value to the left of the current time value from the Status structure.

Parameters

status structure containing current simulation info
ctprior_ptr output, time value to the left of current time value on coarse grid

13.7.2.3 braid_Int braid_StatusGetCTstop (braid_Status status, braid_Real ∗ ctstop_ptr)

Return the coarse grid time value to the right of the current time value from the Status structure.

Parameters

status structure containing current simulation info
ctstop_ptr output, time value to the right of current time value on coarse grid

13.7.2.4 braid_Int braid_StatusGetDone (braid_Status status, braid_Int ∗ done_ptr)

Return whether XBraid is done for the current simulation.

done_ptr = 1 indicates that XBraid has finished iterating, (either maxiter has been reached, or the tolerance has been
met).

Parameters

status structure containing current simulation info
done_ptr output, =1 if XBraid has finished, else =0

13.7.2.5 braid_Int braid_StatusGetFTprior (braid_Status status, braid_Real ∗ ftprior_ptr)

Return the fine grid time value to the left of the current time value from the Status structure.

Parameters

status structure containing current simulation info
ftprior_ptr output, time value to the left of current time value on fine grid

13.7.2.6 braid_Int braid_StatusGetFTstop (braid_Status status, braid_Real ∗ ftstop_ptr)

Return the fine grid time value to the right of the current time value from the Status structure.

Parameters

status structure containing current simulation info
ftstop_ptr output, time value to the right of current time value on fine grid

13.7.2.7 braid_Int braid_StatusGetIter (braid_Status status, braid_Int ∗ iter_ptr)

Return the current iteration from the Status structure.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.7 XBraid status routines 53

Parameters

status structure containing current simulation info
iter_ptr output, current XBraid iteration number

13.7.2.8 braid_Int braid_StatusGetLevel (braid_Status status, braid_Int ∗ level_ptr)

Return the current XBraid level from the Status structure.

Parameters

status structure containing current simulation info
level_ptr output, current level in XBraid

13.7.2.9 braid_Int braid_StatusGetMessageType (braid_Status status, braid_Int ∗ messagetype_ptr)

Return the current message type from the Status structure.

Parameters

status structure containing current simulation info
messagetype_ptr output, type of message, 0: for Step(), 1: for load balancing

13.7.2.10 braid_Int braid_StatusGetNRefine (braid_Status status, braid_Int ∗ nrefine_ptr)

Return the number of refinements done.

Parameters

status structure containing current simulation info
nrefine_ptr output, number of refinements done

13.7.2.11 braid_Int braid_StatusGetNTPoints (braid_Status status, braid_Int ∗ ntpoints_ptr)

Return the global number of time points on the fine grid.

Parameters

status structure containing current simulation info
ntpoints_ptr output, number of time points on the fine grid

13.7.2.12 braid_Int braid_StatusGetOldFineTolx (braid_Status status, braid_Real ∗ old_fine_tolx_ptr)

Return the previous old_fine_tolx set through braid_StatusSetOldFineTolx This is used especially by ∗braid_GetSpatial-
Accuracy

Parameters

status structure containing current simulation info
old_fine_tolx_ptr output, previous old_fine_tolx, set through braid_StepStatusSetOldFineTolx

13.7.2.13 braid_Int braid_StatusGetResidual (braid_Status status, braid_Real ∗ rnorm_ptr)

Return the current residual norm from the Status structure.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

54 CONTENTS

Parameters

status structure containing current simulation info
rnorm_ptr output, current residual norm

13.7.2.14 braid_Int braid_StatusGetRNorms (braid_Status status, braid_Int ∗ nrequest_ptr, braid_Real ∗ rnorms_ptr)

Return the current XBraid residual history. If nrequest_ptr is negative, return the last nrequest_ptr residual norms. If
positive, return the first nrequest_ptr residual norms. Upon exit, nrequest_ptr holds the number of residuals actually
returned.

Parameters

status structure containing current simulation info
nrequest_ptr input/output, input: number of requested residual norms, output: number actually copied

rnorms_ptr output, XBraid residual norm history, of length nrequest_ptr

13.7.2.15 braid_Int braid_StatusGetT (braid_Status status, braid_Real ∗ t_ptr)

Return the current time from the Status structure.

Parameters

status structure containing current simulation info
t_ptr output, current time

13.7.2.16 braid_Int braid_StatusGetTILD (braid_Status status, braid_Real ∗ t_ptr, braid_Int ∗ iter_ptr, braid_Int ∗
level_ptr, braid_Int ∗ done_ptr)

Return XBraid status for the current simulation. Four values are returned.

TILD : time, iteration, level, done

These values are also available through individual Get routines. These individual routines are the location of detailed
documentation on each parameter, e.g., see braid_StatusGetDone for more information on the done value.

Parameters

status structure containing current simulation info
t_ptr output, current time

iter_ptr output, current XBraid iteration number
level_ptr output, current level in XBraid
done_ptr output, =1 if XBraid has finished, else =0

13.7.2.17 braid_Int braid_StatusGetTIndex (braid_Status status, braid_Int ∗ idx_ptr)

Return the index value corresponding to the current time value from the Status structure.

Parameters

status structure containing current simulation info
idx_ptr output, global index value corresponding to current time value

13.7.2.18 braid_Int braid_StatusGetTol (braid_Status status, braid_Real ∗ tol_ptr)

Return the current XBraid stopping tolerance

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.7 XBraid status routines 55

Parameters

status structure containing current simulation info
tol_ptr output, current XBraid stopping tolerance

13.7.2.19 braid_Int braid_StatusGetTpriorTstop (braid_Status status, braid_Real ∗ t_ptr, braid_Real ∗ ftprior_ptr,
braid_Real ∗ ftstop_ptr, braid_Real ∗ ctprior_ptr, braid_Real ∗ ctstop_ptr)

Return XBraid status for the current simulation. Five values are returned, tstart, f_tprior, f_tstop, c_tprior, c_tstop.

These values are also available through individual Get routines. These individual routines are the location of detailed
documentation on each parameter, e.g., see braid_StatusGetCTprior for more information on the c_tprior value.

Parameters

status structure containing current simulation info
t_ptr output, current time

ftprior_ptr output, time value to the left of current time value on fine grid
ftstop_ptr output, time value to the right of current time value on fine grid

ctprior_ptr output, time value to the left of current time value on coarse grid
ctstop_ptr output, time value to the right of current time value on coarse grid

13.7.2.20 braid_Int braid_StatusGetTstartTstop (braid_Status status, braid_Real ∗ tstart_ptr, braid_Real ∗ tstop_ptr)

Return XBraid status for the current simulation. Two values are returned, tstart and tstop.

These values are also available through individual Get routines. These individual routines are the location of detailed
documentation on each parameter, e.g., see braid_StatusGetTstart for more information on the tstart value.

Parameters

status structure containing current simulation info
tstart_ptr output, current time
tstop_ptr output, next time value to evolve towards

13.7.2.21 braid_Int braid_StatusGetTstop (braid_Status status, braid_Real ∗ tstop_ptr)

Return the time value to the right of the current time value from the Status structure.

Parameters

status structure containing current simulation info
tstop_ptr output, next time value to evolve towards

13.7.2.22 braid_Int braid_StatusGetWrapperTest (braid_Status status, braid_Int ∗ wtest_ptr)

Return whether this is a wrapper test or an XBraid run

Parameters

status structure containing current simulation info
wtest_ptr output, =1 if this is a wrapper test, =0 if XBraid run

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

56 CONTENTS

13.7.2.23 braid_Int braid_StatusSetOldFineTolx (braid_Status status, braid_Real old_fine_tolx)

Set old_fine_tolx, available for retrieval through braid_StatusGetOldFineTolx This is used especially by ∗braid_Get-
SpatialAccuracy

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.7 XBraid status routines 57

Parameters

status structure containing current simulation info
old_fine_tolx input, the last used fine_tolx

13.7.2.24 braid_Int braid_StatusSetRFactor (braid_Status status, braid_Real rfactor)

Set the rfactor, a desired refinement factor for this interval. rfactor=1 indicates no refinement, otherwise, this inteval is
subdivided rfactor times.

Parameters

status structure containing current simulation info
rfactor input, user-determined desired rfactor

13.7.2.25 braid_Int braid_StatusSetRSpace (braid_Status status, braid_Real r_space)

Set the r_space flag. When set = 1, spatial coarsening will be called, for all local time points, following the completion
of the current iteration, provided rfactors are not set at any global time point. This allows for spatial refinment without
temporal refinment

Parameters

status structure containing current simulation info
r_space input, if 1, call spatial refinement on finest grid after this iter

13.7.2.26 braid_Int braid_StatusSetSize (braid_Status status, braid_Real size)

Set the size of the buffer. If set by user, the send buffer will be "size" bytes in length. If not, BufSize is used.

Parameters

status structure containing current simulation info
size input, size of the send buffer

13.7.2.27 braid_Int braid_StatusSetTightFineTolx (braid_Status status, braid_Real tight_fine_tolx)

Set tight_fine_tolx, boolean variable indicating whether the tightest tolerance has been used for spatial solves (implicit
schemes). This value must be 1 in order for XBraid to halt (unless maxiter is reached)

Parameters

status structure containing current simulation info
tight_fine_tolx input, boolean indicating whether the tight tolx has been used

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

58 CONTENTS

13.8 Inherited XBraid status routines

Functions

• braid_Int braid_AccessStatusGetT (braid_AccessStatus s, braid_Real ∗v1)
• braid_Int braid_AccessStatusGetTIndex (braid_AccessStatus s, braid_Int ∗v1)
• braid_Int braid_AccessStatusGetIter (braid_AccessStatus s, braid_Int ∗v1)
• braid_Int braid_AccessStatusGetLevel (braid_AccessStatus s, braid_Int ∗v1)
• braid_Int braid_AccessStatusGetNRefine (braid_AccessStatus s, braid_Int ∗v1)
• braid_Int braid_AccessStatusGetNTPoints (braid_AccessStatus s, braid_Int ∗v1)
• braid_Int braid_AccessStatusGetResidual (braid_AccessStatus s, braid_Real ∗v1)
• braid_Int braid_AccessStatusGetDone (braid_AccessStatus s, braid_Int ∗v1)
• braid_Int braid_AccessStatusGetTILD (braid_AccessStatus s, braid_Real ∗v1, braid_Int ∗v2, braid_Int ∗v3, braid-

_Int ∗v4)
• braid_Int braid_AccessStatusGetWrapperTest (braid_AccessStatus s, braid_Int ∗v1)
• braid_Int braid_AccessStatusGetCallingFunction (braid_AccessStatus s, braid_Int ∗v1)
• braid_Int braid_CoarsenRefStatusGetT (braid_CoarsenRefStatus s, braid_Real ∗v1)
• braid_Int braid_CoarsenRefStatusGetTIndex (braid_CoarsenRefStatus s, braid_Int ∗v1)
• braid_Int braid_CoarsenRefStatusGetIter (braid_CoarsenRefStatus s, braid_Int ∗v1)
• braid_Int braid_CoarsenRefStatusGetLevel (braid_CoarsenRefStatus s, braid_Int ∗v1)
• braid_Int braid_CoarsenRefStatusGetNRefine (braid_CoarsenRefStatus s, braid_Int ∗v1)
• braid_Int braid_CoarsenRefStatusGetNTPoints (braid_CoarsenRefStatus s, braid_Int ∗v1)
• braid_Int braid_CoarsenRefStatusGetCTprior (braid_CoarsenRefStatus s, braid_Real ∗v1)
• braid_Int braid_CoarsenRefStatusGetCTstop (braid_CoarsenRefStatus s, braid_Real ∗v1)
• braid_Int braid_CoarsenRefStatusGetFTprior (braid_CoarsenRefStatus s, braid_Real ∗v1)
• braid_Int braid_CoarsenRefStatusGetFTstop (braid_CoarsenRefStatus s, braid_Real ∗v1)
• braid_Int braid_CoarsenRefStatusGetTpriorTstop (braid_CoarsenRefStatus s, braid_Real ∗v1, braid_Real ∗v2,

braid_Real ∗v3, braid_Real ∗v4, braid_Real ∗v5)
• braid_Int braid_StepStatusGetT (braid_StepStatus s, braid_Real ∗v1)
• braid_Int braid_StepStatusGetTIndex (braid_StepStatus s, braid_Int ∗v1)
• braid_Int braid_StepStatusGetIter (braid_StepStatus s, braid_Int ∗v1)
• braid_Int braid_StepStatusGetLevel (braid_StepStatus s, braid_Int ∗v1)
• braid_Int braid_StepStatusGetNRefine (braid_StepStatus s, braid_Int ∗v1)
• braid_Int braid_StepStatusGetNTPoints (braid_StepStatus s, braid_Int ∗v1)
• braid_Int braid_StepStatusGetTstop (braid_StepStatus s, braid_Real ∗v1)
• braid_Int braid_StepStatusGetTstartTstop (braid_StepStatus s, braid_Real ∗v1, braid_Real ∗v2)
• braid_Int braid_StepStatusGetTol (braid_StepStatus s, braid_Real ∗v1)
• braid_Int braid_StepStatusGetRNorms (braid_StepStatus s, braid_Int ∗v1, braid_Real ∗v2)
• braid_Int braid_StepStatusGetOldFineTolx (braid_StepStatus s, braid_Real ∗v1)
• braid_Int braid_StepStatusSetOldFineTolx (braid_StepStatus s, braid_Real v1)
• braid_Int braid_StepStatusSetTightFineTolx (braid_StepStatus s, braid_Real v1)
• braid_Int braid_StepStatusSetRFactor (braid_StepStatus s, braid_Real v1)
• braid_Int braid_StepStatusSetRSpace (braid_StepStatus s, braid_Real v1)
• braid_Int braid_BufferStatusGetMessageType (braid_BufferStatus s, braid_Int ∗v1)
• braid_Int braid_BufferStatusSetSize (braid_BufferStatus s, braid_Real v1)

13.8.1 Detailed Description

These are the ‘inherited’ Status Get/Set functions. See the XBraid status routines section for the description of each
function. For example, for braid_StepStatusGetT(...), you would look up braid_StatusGetT(...)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.8 Inherited XBraid status routines 59

13.8.2 Function Documentation

13.8.2.1 braid_Int braid_AccessStatusGetCallingFunction (braid_AccessStatus s, braid_Int ∗ v1)

13.8.2.2 braid_Int braid_AccessStatusGetDone (braid_AccessStatus s, braid_Int ∗ v1)

13.8.2.3 braid_Int braid_AccessStatusGetIter (braid_AccessStatus s, braid_Int ∗ v1)

13.8.2.4 braid_Int braid_AccessStatusGetLevel (braid_AccessStatus s, braid_Int ∗ v1)

13.8.2.5 braid_Int braid_AccessStatusGetNRefine (braid_AccessStatus s, braid_Int ∗ v1)

13.8.2.6 braid_Int braid_AccessStatusGetNTPoints (braid_AccessStatus s, braid_Int ∗ v1)

13.8.2.7 braid_Int braid_AccessStatusGetResidual (braid_AccessStatus s, braid_Real ∗ v1)

13.8.2.8 braid_Int braid_AccessStatusGetT (braid_AccessStatus s, braid_Real ∗ v1)

13.8.2.9 braid_Int braid_AccessStatusGetTILD (braid_AccessStatus s, braid_Real ∗ v1, braid_Int ∗ v2, braid_Int ∗ v3,
braid_Int ∗ v4)

13.8.2.10 braid_Int braid_AccessStatusGetTIndex (braid_AccessStatus s, braid_Int ∗ v1)

13.8.2.11 braid_Int braid_AccessStatusGetWrapperTest (braid_AccessStatus s, braid_Int ∗ v1)

13.8.2.12 braid_Int braid_BufferStatusGetMessageType (braid_BufferStatus s, braid_Int ∗ v1)

13.8.2.13 braid_Int braid_BufferStatusSetSize (braid_BufferStatus s, braid_Real v1)

13.8.2.14 braid_Int braid_CoarsenRefStatusGetCTprior (braid_CoarsenRefStatus s, braid_Real ∗ v1)

13.8.2.15 braid_Int braid_CoarsenRefStatusGetCTstop (braid_CoarsenRefStatus s, braid_Real ∗ v1)

13.8.2.16 braid_Int braid_CoarsenRefStatusGetFTprior (braid_CoarsenRefStatus s, braid_Real ∗ v1)

13.8.2.17 braid_Int braid_CoarsenRefStatusGetFTstop (braid_CoarsenRefStatus s, braid_Real ∗ v1)

13.8.2.18 braid_Int braid_CoarsenRefStatusGetIter (braid_CoarsenRefStatus s, braid_Int ∗ v1)

13.8.2.19 braid_Int braid_CoarsenRefStatusGetLevel (braid_CoarsenRefStatus s, braid_Int ∗ v1)

13.8.2.20 braid_Int braid_CoarsenRefStatusGetNRefine (braid_CoarsenRefStatus s, braid_Int ∗ v1)

13.8.2.21 braid_Int braid_CoarsenRefStatusGetNTPoints (braid_CoarsenRefStatus s, braid_Int ∗ v1)

13.8.2.22 braid_Int braid_CoarsenRefStatusGetT (braid_CoarsenRefStatus s, braid_Real ∗ v1)

13.8.2.23 braid_Int braid_CoarsenRefStatusGetTIndex (braid_CoarsenRefStatus s, braid_Int ∗ v1)

13.8.2.24 braid_Int braid_CoarsenRefStatusGetTpriorTstop (braid_CoarsenRefStatus s, braid_Real ∗ v1, braid_Real ∗
v2, braid_Real ∗ v3, braid_Real ∗ v4, braid_Real ∗ v5)

13.8.2.25 braid_Int braid_StepStatusGetIter (braid_StepStatus s, braid_Int ∗ v1)

13.8.2.26 braid_Int braid_StepStatusGetLevel (braid_StepStatus s, braid_Int ∗ v1)

13.8.2.27 braid_Int braid_StepStatusGetNRefine (braid_StepStatus s, braid_Int ∗ v1)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

60 CONTENTS

13.8.2.28 braid_Int braid_StepStatusGetNTPoints (braid_StepStatus s, braid_Int ∗ v1)

13.8.2.29 braid_Int braid_StepStatusGetOldFineTolx (braid_StepStatus s, braid_Real ∗ v1)

13.8.2.30 braid_Int braid_StepStatusGetRNorms (braid_StepStatus s, braid_Int ∗ v1, braid_Real ∗ v2)

13.8.2.31 braid_Int braid_StepStatusGetT (braid_StepStatus s, braid_Real ∗ v1)

13.8.2.32 braid_Int braid_StepStatusGetTIndex (braid_StepStatus s, braid_Int ∗ v1)

13.8.2.33 braid_Int braid_StepStatusGetTol (braid_StepStatus s, braid_Real ∗ v1)

13.8.2.34 braid_Int braid_StepStatusGetTstartTstop (braid_StepStatus s, braid_Real ∗ v1, braid_Real ∗ v2)

13.8.2.35 braid_Int braid_StepStatusGetTstop (braid_StepStatus s, braid_Real ∗ v1)

13.8.2.36 braid_Int braid_StepStatusSetOldFineTolx (braid_StepStatus s, braid_Real v1)

13.8.2.37 braid_Int braid_StepStatusSetRFactor (braid_StepStatus s, braid_Real v1)

13.8.2.38 braid_Int braid_StepStatusSetRSpace (braid_StepStatus s, braid_Real v1)

13.8.2.39 braid_Int braid_StepStatusSetTightFineTolx (braid_StepStatus s, braid_Real v1)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.9 XBraid status macros 61

13.9 XBraid status macros

Macros

• #define braid_ASCaller_FInterp 0
• #define braid_ASCaller_FRestrict 1
• #define braid_ASCaller_FRefine 2
• #define braid_ASCaller_FAccess 3

13.9.1 Detailed Description

Macros defining Status values that the user can obtain during runtime, which will tell the user where in Braid the current
cycle is, e.g. in the FInterp function.

13.9.2 Macro Definition Documentation

13.9.2.1 #define braid_ASCaller_FAccess 3

When CallingFunction equals 0, Braid is in FAccess

13.9.2.2 #define braid_ASCaller_FInterp 0

When CallingFunction equals 0, Braid is in FInterp

13.9.2.3 #define braid_ASCaller_FRefine 2

When CallingFunction equals 0, Braid is in FRefine

13.9.2.4 #define braid_ASCaller_FRestrict 1

When CallingFunction equals 0, Braid is in FRestrict

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

62 CONTENTS

13.10 XBraid test routines

Functions

• braid_Int braid_TestInitAccess (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit init,
braid_PtFcnAccess access, braid_PtFcnFree free)

• braid_Int braid_TestClone (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit init,
braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone)

• braid_Int braid_TestSum (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit init, braid-
_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum)

• braid_Int braid_TestSpatialNorm (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit
init, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm)

• braid_Int braid_TestBuf (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit init, braid_-
PtFcnFree free, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnBufSize bufsize, braid-
_PtFcnBufPack bufpack, braid_PtFcnBufUnpack bufunpack)

• braid_Int braid_TestCoarsenRefine (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_Real
fdt, braid_Real cdt, braid_PtFcnInit init, braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone
clone, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnSCoarsen coarsen, braid_Pt-
FcnSRefine refine)

• braid_Int braid_TestResidual (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_Real dt, braid-
_PtFcnInit myinit, braid_PtFcnAccess myaccess, braid_PtFcnFree myfree, braid_PtFcnClone clone, braid_Pt-
FcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnResidual residual, braid_PtFcnStep step)

• braid_Int braid_TestAll (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_Real fdt, braid_-
Real cdt, braid_PtFcnInit init, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum, braid_Pt-
FcnSpatialNorm spatialnorm, braid_PtFcnBufSize bufsize, braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack
bufunpack, braid_PtFcnSCoarsen coarsen, braid_PtFcnSRefine refine, braid_PtFcnResidual residual, braid_Pt-
FcnStep step)

13.10.1 Detailed Description

These are sanity check routines to help a user test their XBraid code.

13.10.2 Function Documentation

13.10.2.1 braid_Int braid_TestAll (braid_App app, MPI_Comm comm_x, FILE ∗ fp, braid_Real t, braid_Real fdt,
braid_Real cdt, braid_PtFcnInit init, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum
sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnBufSize bufsize, braid_PtFcnBufPack bufpack,
braid_PtFcnBufUnpack bufunpack, braid_PtFcnSCoarsen coarsen, braid_PtFcnSRefine refine,
braid_PtFcnResidual residual, braid_PtFcnStep step)

Runs all of the individual braid_Test∗ routines

• Returns 0 if the tests fail

• Returns 1 if the tests pass

• Check the log messages to see details of which tests failed.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.10 XBraid test routines 63

Parameters

app User defined App structure
comm_x Spatial communicator

fp File pointer (could be stdout or stderr) for log messages
t Time value to initialize test vectors with

fdt Fine time step value that you spatially coarsen from
cdt Coarse time step value that you coarsen to
init Initialize a braid_Vector on finest temporal grid

free Free a braid_Vector
clone Clone a braid_Vector
sum Compute vector sum of two braid_Vectors

spatialnorm Compute norm of a braid_Vector, this is a norm only over space
bufsize Computes size in bytes for one braid_Vector MPI buffer

bufpack Packs MPI buffer to contain one braid_Vector
bufunpack Unpacks MPI buffer into a braid_Vector

coarsen Spatially coarsen a vector. If NULL, test is skipped.
refine Spatially refine a vector. If NULL, test is skipped.

residual Compute a residual given two consectuive braid_Vectors
step Compute a time step with a braid_Vector

13.10.2.2 braid_Int braid_TestBuf (braid_App app, MPI_Comm comm_x, FILE ∗ fp, braid_Real t, braid_PtFcnInit init,
braid_PtFcnFree free, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnBufSize
bufsize, braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack bufunpack)

Test the BufPack, BufUnpack and BufSize functions.

A vector is initialized at time t, packed into a buffer, then unpacked from a buffer. The unpacked result must equal the
original vector.

• Returns 0 if the tests fail

• Returns 1 if the tests pass

• Check the log messages to see details of which tests failed.

Parameters

app User defined App structure
comm_x Spatial communicator

fp File pointer (could be stdout or stderr) for log messages
t Time value to test Buffer routines (used to initialize the vectors)

init Initialize a braid_Vector on finest temporal grid
free Free a braid_Vector
sum Compute vector sum of two braid_Vectors

spatialnorm Compute norm of a braid_Vector, this is a norm only over space
bufsize Computes size in bytes for one braid_Vector MPI buffer

bufpack Packs MPI buffer to contain one braid_Vector
bufunpack Unpacks MPI buffer containing one braid_Vector

13.10.2.3 braid_Int braid_TestClone (braid_App app, MPI_Comm comm_x, FILE ∗ fp, braid_Real t, braid_PtFcnInit init,
braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone)

Test the clone function.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

64 CONTENTS

A vector is initialized at time t, cloned, and both vectors are written. Then both vectors are free-d. The user is to check
(via the access function) to see if it is identical.

Parameters

app User defined App structure
comm_x Spatial communicator

fp File pointer (could be stdout or stderr) for log messages
t Time value to test clone with (used to initialize the vectors)

init Initialize a braid_Vector on finest temporal grid
access Allows access to XBraid and current braid_Vector (can be NULL for no writing)

free Free a braid_Vector
clone Clone a braid_Vector

13.10.2.4 braid_Int braid_TestCoarsenRefine (braid_App app, MPI_Comm comm_x, FILE ∗ fp, braid_Real t,
braid_Real fdt, braid_Real cdt, braid_PtFcnInit init, braid_PtFcnAccess access, braid_PtFcnFree
free, braid_PtFcnClone clone, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm,
braid_PtFcnSCoarsen coarsen, braid_PtFcnSRefine refine)

Test the Coarsen and Refine functions.

A vector is initialized at time t, and various sanity checks on the spatial coarsening and refinement routines are run.

• Returns 0 if the tests fail

• Returns 1 if the tests pass

• Check the log messages to see details of which tests failed.

Parameters

app User defined App structure
comm_x Spatial communicator

fp File pointer (could be stdout or stderr) for log messages
t Time value to initialize test vectors

fdt Fine time step value that you spatially coarsen from
cdt Coarse time step value that you coarsen to
init Initialize a braid_Vector on finest temporal grid

access Allows access to XBraid and current braid_Vector (can be NULL for no writing)
free Free a braid_Vector

clone Clone a braid_Vector
sum Compute vector sum of two braid_Vectors

spatialnorm Compute norm of a braid_Vector, this is a norm only over space
coarsen Spatially coarsen a vector

refine Spatially refine a vector

13.10.2.5 braid_Int braid_TestInitAccess (braid_App app, MPI_Comm comm_x, FILE ∗ fp, braid_Real t, braid_PtFcnInit
init, braid_PtFcnAccess access, braid_PtFcnFree free)

Test the init, access and free functions.

A vector is initialized at time t, written, and then free-d

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.10 XBraid test routines 65

Parameters

app User defined App structure
comm_x Spatial communicator

fp File pointer (could be stdout or stderr) for log messages
t Time value to test init with (used to initialize the vectors)

init Initialize a braid_Vector on finest temporal grid
access Allows access to XBraid and current braid_Vector (can be NULL for no writing)

free Free a braid_Vector

13.10.2.6 braid_Int braid_TestResidual (braid_App app, MPI_Comm comm_x, FILE ∗ fp, braid_Real t, braid_Real dt,
braid_PtFcnInit myinit, braid_PtFcnAccess myaccess, braid_PtFcnFree myfree, braid_PtFcnClone
clone, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnResidual residual,
braid_PtFcnStep step)

Test compatibility of the Step and Residual functions.

A vector is initialized at time t, step is called with dt, followed by an evaluation of residual, to test the condition fstop -
residual(step(u, fstop), u) approx. 0

• Check the log messages to determine if test passed. The result should approximately be zero. The more accurate
the solution for u is computed in step, the closer the result will be to 0.

• The residual is also written to file

Parameters

app User defined App structure
comm_x Spatial communicator

fp File pointer (could be stdout or stderr) for log messages
t Time value to initialize test vectors

dt Time step value to use in step
myinit Initialize a braid_Vector on finest temporal grid

myaccess Allows access to XBraid and current braid_Vector (can be NULL for no writing)
myfree Free a braid_Vector

clone Clone a braid_Vector
sum Compute vector sum of two braid_Vectors

spatialnorm Compute norm of a braid_Vector, this is a norm only over space
residual Compute a residual given two consectuive braid_Vectors

step Compute a time step with a braid_Vector

13.10.2.7 braid_Int braid_TestSpatialNorm (braid_App app, MPI_Comm comm_x, FILE ∗ fp, braid_Real t,
braid_PtFcnInit init, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum,
braid_PtFcnSpatialNorm spatialnorm)

Test the spatialnorm function.

A vector is initialized at time t and then cloned. Various norm evaluations like || 3 v || / || v || with known output are then
done.

• Returns 0 if the tests fail

• Returns 1 if the tests pass

• Check the log messages to see details of which tests failed.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

66 CONTENTS

Parameters

app User defined App structure
comm_x Spatial communicator

fp File pointer (could be stdout or stderr) for log messages
t Time value to test SpatialNorm with (used to initialize the vectors)

init Initialize a braid_Vector on finest temporal grid
free Free a braid_Vector

clone Clone a braid_Vector
sum Compute vector sum of two braid_Vectors

spatialnorm Compute norm of a braid_Vector, this is a norm only over space

13.10.2.8 braid_Int braid_TestSum (braid_App app, MPI_Comm comm_x, FILE ∗ fp, braid_Real t, braid_PtFcnInit init,
braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum)

Test the sum function.

A vector is initialized at time t, cloned, and then these two vectors are summed a few times, with the results written.
The vectors are then free-d. The user is to check (via the access function) that the output matches the sum of the two
original vectors.

Parameters

app User defined App structure
comm_x Spatial communicator

fp File pointer (could be stdout or stderr) for log messages
t Time value to test Sum with (used to initialize the vectors)

init Initialize a braid_Vector on finest temporal grid
access Allows access to XBraid and current braid_Vector (can be NULL for no writing)

free Free a braid_Vector
clone Clone a braid_Vector
sum Compute vector sum of two braid_Vectors

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

14 Data Structure Documentation 67

14 Data Structure Documentation

14.1 _braid_CommHandle Struct Reference

Data Fields

• braid_Int request_type
• braid_Int num_requests
• MPI_Request ∗ requests
• MPI_Status ∗ status
• void ∗ buffer
• braid_Vector ∗ vector_ptr

14.1.1 Detailed Description

XBraid comm handle structure

Used for initiating and completing nonblocking communication to pass braid_Vectors between processors.

14.1.2 Field Documentation

14.1.2.1 void∗ buffer

Buffer for message

14.1.2.2 braid_Int num_requests

number of active requests for this handle, usually 1

14.1.2.3 braid_Int request_type

two values: recv type = 1, and send type = 0

14.1.2.4 MPI_Request∗ requests

MPI request structure

14.1.2.5 MPI_Status∗ status

MPI status

14.1.2.6 braid_Vector∗ vector_ptr

braid_vector being sent/received

The documentation for this struct was generated from the following file:

• _braid.h

14.2 _braid_Core Struct Reference

Data Fields

• MPI_Comm comm_world

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

68 CONTENTS

• MPI_Comm comm
• braid_Int myid_world
• braid_Int myid
• braid_Real tstart
• braid_Real tstop
• braid_Int ntime
• braid_App app
• braid_PtFcnStep step
• braid_PtFcnInit init
• braid_PtFcnSInit sinit
• braid_PtFcnClone clone
• braid_PtFcnSClone sclone
• braid_PtFcnFree free
• braid_PtFcnSFree sfree
• braid_PtFcnSum sum
• braid_PtFcnSpatialNorm spatialnorm
• braid_PtFcnAccess access
• braid_PtFcnBufSize bufsize
• braid_PtFcnBufPack bufpack
• braid_PtFcnBufUnpack bufunpack
• braid_PtFcnResidual residual
• braid_PtFcnSCoarsen scoarsen
• braid_PtFcnSRefine srefine
• braid_PtFcnTimeGrid tgrid
• braid_Int access_level
• braid_Int print_level
• braid_Int seq_soln
• braid_Int max_levels
• braid_Int min_coarse
• braid_Real tol
• braid_Int rtol
• braid_Int ∗ nrels
• braid_Int nrdefault
• braid_Int ∗ cfactors
• braid_Int cfdefault
• braid_Int max_iter
• braid_Int niter
• braid_Int fmg
• braid_Int nfmg
• braid_Int nfmg_Vcyc
• braid_Int tnorm
• braid_Real ∗ tnorm_a
• braid_Real rnorm0
• braid_Real ∗ rnorms
• braid_PtFcnResidual full_rnorm_res
• braid_Real full_rnorm0
• braid_Real ∗ full_rnorms
• braid_Int storage
• braid_Int useshell
• braid_Int gupper

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

14.2 _braid_Core Struct Reference 69

• braid_Int refine
• braid_Int ∗ rfactors
• braid_Int r_space
• braid_Int rstopped
• braid_Int nrefine
• braid_Int max_refinements
• braid_Int tpoints_cutoff
• braid_Int skip
• braid_Int nlevels
• _braid_Grid ∗∗ grids
• braid_Real localtime
• braid_Real globaltime
• braid_Real t
• braid_Int idx
• braid_Int level
• braid_Real rnorm
• braid_Int done
• braid_Int wrapper_test
• braid_Int calling_function
• braid_Real f_tprior
• braid_Real f_tstop
• braid_Real c_tprior
• braid_Real c_tstop
• braid_Real tnext
• braid_Real old_fine_tolx
• braid_Int tight_fine_tolx
• braid_Int rfactor
• braid_Int messagetype
• braid_Int size_buffer

14.2.1 Detailed Description

The typedef _braid_Core struct is a critical part of XBraid and is passed to each routine in XBraid. It thus allows each
routine access to XBraid attributes.

14.2.2 Field Documentation

14.2.2.1 braid_PtFcnAccess access

user access function to XBraid and current vector

14.2.2.2 braid_Int access_level

determines how often to call the user’s access routine

14.2.2.3 braid_App app

application data for the user

14.2.2.4 braid_PtFcnBufPack bufpack

pack a buffer

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

70 CONTENTS

14.2.2.5 braid_PtFcnBufSize bufsize

return buffer size

14.2.2.6 braid_PtFcnBufUnpack bufunpack

unpack a buffer

14.2.2.7 braid_Real c_tprior

time value to the left of tstart on coarse grid

14.2.2.8 braid_Real c_tstop

time value to the right of tstart on coarse grid

14.2.2.9 braid_Int calling_function

from which function are we accessing the vector

14.2.2.10 braid_Int∗ cfactors

coarsening factors

14.2.2.11 braid_Int cfdefault

default coarsening factor

14.2.2.12 braid_PtFcnClone clone

clone a vector

14.2.2.13 MPI_Comm comm

communicator for the time dimension

14.2.2.14 MPI_Comm comm_world

14.2.2.15 braid_Int done

boolean describing whether XBraid has finished

14.2.2.16 braid_Real f_tprior

CoarsenRefStatus properties time value to the left of tstart on fine grid

14.2.2.17 braid_Real f_tstop

time value to the right of tstart on fine grid

14.2.2.18 braid_Int fmg

use FMG cycle

14.2.2.19 braid_PtFcnFree free

free up a vector

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

14.2 _braid_Core Struct Reference 71

14.2.2.20 braid_Real full_rnorm0

(optional) initial full residual norm

14.2.2.21 braid_PtFcnResidual full_rnorm_res

(optional) used to compute full residual norm

14.2.2.22 braid_Real∗ full_rnorms

(optional) full residual norm history

14.2.2.23 braid_Real globaltime

global wall time for braid_Drive()

14.2.2.24 _braid_Grid∗∗ grids

pointer to temporal grid structures for each level

14.2.2.25 braid_Int gupper

global size of the fine grid

14.2.2.26 braid_Int idx

time point index value corresponding to t on the global time grid

14.2.2.27 braid_PtFcnInit init

return an initialized braid_Vector

14.2.2.28 braid_Int level

current level in XBraid

14.2.2.29 braid_Real localtime

local wall time for braid_Drive()

14.2.2.30 braid_Int max_iter

maximum number of multigrid in time iterations

14.2.2.31 braid_Int max_levels

maximum number of temporal grid levels

14.2.2.32 braid_Int max_refinements

maximum number of refinements

14.2.2.33 braid_Int messagetype

BufferStatus properties message type, 0: for Step(), 1: for load balancing

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

72 CONTENTS

14.2.2.34 braid_Int min_coarse

minimum possible coarse grid size

14.2.2.35 braid_Int myid

my rank in the time communicator

14.2.2.36 braid_Int myid_world

my rank in the world communicator

14.2.2.37 braid_Int nfmg

number of fmg cycles to do initially before switching to V-cycles

14.2.2.38 braid_Int nfmg_Vcyc

number of V-cycle calls at each level in FMG

14.2.2.39 braid_Int niter

number of iterations

14.2.2.40 braid_Int nlevels

number of temporal grid levels

14.2.2.41 braid_Int nrdefault

default number of pre-relaxations

14.2.2.42 braid_Int nrefine

number of refinements done

14.2.2.43 braid_Int∗ nrels

number of pre-relaxations on each level

14.2.2.44 braid_Int ntime

initial number of time intervals

14.2.2.45 braid_Real old_fine_tolx

Allows for storing the previously used fine tolerance from GetSpatialAccuracy

14.2.2.46 braid_Int print_level

determines amount of output printed to screen (0,1,2)

14.2.2.47 braid_Int r_space

spatial refinment flag

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

14.2 _braid_Core Struct Reference 73

14.2.2.48 braid_Int refine

refine in time (refine = 1)

14.2.2.49 braid_PtFcnResidual residual

(optional) compute residual

14.2.2.50 braid_Int rfactor

if set by user, allows for subdivision of this interval for better time accuracy

14.2.2.51 braid_Int∗ rfactors

refinement factors for finest grid (if any)

14.2.2.52 braid_Real rnorm

AccessStatus properties residual norm

14.2.2.53 braid_Real rnorm0

initial residual norm

14.2.2.54 braid_Real∗ rnorms

residual norm history

14.2.2.55 braid_Int rstopped

refinement stopped at iteration rstopped

14.2.2.56 braid_Int rtol

use relative tolerance

14.2.2.57 braid_PtFcnSClone sclone

(optional) clone the shell of a vector

14.2.2.58 braid_PtFcnSCoarsen scoarsen

(optional) return a spatially coarsened vector

14.2.2.59 braid_Int seq_soln

boolean, controls if the initial guess is from sequential time stepping

14.2.2.60 braid_PtFcnSFree sfree

(optional) free up the data of a vector, keep the shell

14.2.2.61 braid_PtFcnSInit sinit

(optional) return an initialized shell of braid_Vector

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

74 CONTENTS

14.2.2.62 braid_Int size_buffer

if set by user, send buffer will be "size" bytes in length

14.2.2.63 braid_Int skip

boolean, controls skipping any work on first down-cycle

14.2.2.64 braid_PtFcnSpatialNorm spatialnorm

Compute norm of a braid_Vector, this is a norm only over space

14.2.2.65 braid_PtFcnSRefine srefine

(optional) return a spatially refined vector

14.2.2.66 braid_PtFcnStep step

apply step function

14.2.2.67 braid_Int storage

storage = 0 (C-points), = 1 (all)

14.2.2.68 braid_PtFcnSum sum

vector sum

14.2.2.69 braid_Real t

Data elements required for the Status structures Common Status properties current time

14.2.2.70 braid_PtFcnTimeGrid tgrid

(optional) return time point values on level 0

14.2.2.71 braid_Int tight_fine_tolx

Boolean, indicating whether the tightest fine tolx has been used, condition for halting

14.2.2.72 braid_Real tnext

StepStatus properties time value to evolve towards, time value to the right of tstart

14.2.2.73 braid_Int tnorm

choice of temporal norm

14.2.2.74 braid_Real∗ tnorm_a

local array of residual norms on a proc’s interval, used for inf-norm

14.2.2.75 braid_Real tol

stopping tolerance

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

14.3 _braid_Grid Struct Reference 75

14.2.2.76 braid_Int tpoints_cutoff

refinements halt after the number of time steps exceed this value

14.2.2.77 braid_Real tstart

start time

14.2.2.78 braid_Real tstop

stop time

14.2.2.79 braid_Int useshell

activate the shell structure of vectors

14.2.2.80 braid_Int wrapper_test

boolean describing whether this call is only a wrapper test

The documentation for this struct was generated from the following file:

• _braid.h

14.3 _braid_Grid Struct Reference

Data Fields

• braid_Int level
• braid_Int ilower
• braid_Int iupper
• braid_Int clower
• braid_Int cupper
• braid_Int gupper
• braid_Int cfactor
• braid_Int ncpoints
• braid_Int nupoints
• braid_Vector ∗ ua
• braid_Real ∗ ta
• braid_Vector ∗ va
• braid_Vector ∗ fa
• braid_Int recv_index
• braid_Int send_index
• _braid_CommHandle ∗ recv_handle
• _braid_CommHandle ∗ send_handle
• braid_Vector ∗ ua_alloc
• braid_Real ∗ ta_alloc
• braid_Vector ∗ va_alloc
• braid_Vector ∗ fa_alloc

14.3.1 Detailed Description

XBraid Grid structure for a certain time level

Holds all the information for a processor related to the temporal grid at this level.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

76 CONTENTS

14.3.2 Field Documentation

14.3.2.1 braid_Int cfactor

coarsening factor

14.3.2.2 braid_Int clower

smallest C point index

14.3.2.3 braid_Int cupper

largest C point index

14.3.2.4 braid_Vector∗ fa

rhs vectors f (all points, NULL on level 0)

14.3.2.5 braid_Vector∗ fa_alloc

original memory allocation for fa

14.3.2.6 braid_Int gupper

global size of the grid

14.3.2.7 braid_Int ilower

smallest time index at this level

14.3.2.8 braid_Int iupper

largest time index at this level

14.3.2.9 braid_Int level

Level that grid is on

14.3.2.10 braid_Int ncpoints

number of C points

14.3.2.11 braid_Int nupoints

number of unknown vector points

14.3.2.12 _braid_CommHandle∗ recv_handle

Handle for nonblocking receives of braid_Vectors

14.3.2.13 braid_Int recv_index

-1 means no receive

14.3.2.14 _braid_CommHandle∗ send_handle

Handle for nonblocking sends of braid_Vectors

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

15 File Documentation 77

14.3.2.15 braid_Int send_index

-1 means no send

14.3.2.16 braid_Real∗ ta

time values (all points)

14.3.2.17 braid_Real∗ ta_alloc

original memory allocation for ta

14.3.2.18 braid_Vector∗ ua

unknown vectors (C-points at least)

14.3.2.19 braid_Vector∗ ua_alloc

original memory allocation for ua

14.3.2.20 braid_Vector∗ va

restricted unknown vectors (all points, NULL on level 0)

14.3.2.21 braid_Vector∗ va_alloc

original memory allocation for va

The documentation for this struct was generated from the following file:

• _braid.h

15 File Documentation

15.1 _braid.h File Reference

Data Structures

• struct _braid_CommHandle
• struct _braid_Grid
• struct _braid_Core

Macros

• #define _braid_CommHandleElt(handle, elt) ((handle) -> elt)
• #define _braid_GridElt(grid, elt) ((grid) -> elt)
• #define _braid_CoreElt(core, elt) ((core) -> elt)
• #define _braid_CoreFcn(core, fcn) (∗((core) -> fcn))
• #define _braid_MapFineToCoarse(findex, cfactor, cindex) (cindex = (findex)/(cfactor))
• #define _braid_MapCoarseToFine(cindex, cfactor, findex) (findex = (cindex)∗(cfactor))
• #define _braid_IsFPoint(index, cfactor) ((index)%(cfactor))
• #define _braid_IsCPoint(index, cfactor) (!_braid_IsFPoint(index, cfactor))
• #define _braid_NextCPoint(index, cfactor) (((braid_Int)((index)+(cfactor)-1)/(cfactor))∗(cfactor))

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

78 CONTENTS

Functions

• braid_Int _braid_GetBlockDistInterval (braid_Int npoints, braid_Int nprocs, braid_Int proc, braid_Int ∗ilower_ptr,
braid_Int ∗iupper_ptr)

• braid_Int _braid_GetBlockDistProc (braid_Int npoints, braid_Int nprocs, braid_Int index, braid_Int ∗proc_ptr)
• braid_Int _braid_GetDistribution (braid_Core core, braid_Int ∗ilower_ptr, braid_Int ∗iupper_ptr)
• braid_Int _braid_GetProc (braid_Core core, braid_Int level, braid_Int index, braid_Int ∗proc_ptr)
• braid_Int _braid_GetCFactor (braid_Core core, braid_Int level, braid_Int ∗cfactor_ptr)
• braid_Int _braid_CommRecvInit (braid_Core core, braid_Int level, braid_Int index, braid_Vector ∗vector_ptr, _-

braid_CommHandle ∗∗handle_ptr)
• braid_Int _braid_CommSendInit (braid_Core core, braid_Int level, braid_Int index, braid_Vector vector, _braid_-

CommHandle ∗∗handle_ptr)
• braid_Int _braid_CommWait (braid_Core core, _braid_CommHandle ∗∗handle_ptr)
• braid_Int _braid_UGetIndex (braid_Core core, braid_Int level, braid_Int index, braid_Int ∗uindex_ptr, braid_Int
∗store_flag_ptr)

• braid_Int _braid_UGetVectorRef (braid_Core core, braid_Int level, braid_Int index, braid_Vector ∗u_ptr)
• braid_Int _braid_USetVectorRef (braid_Core core, braid_Int level, braid_Int index, braid_Vector u)
• braid_Int _braid_UGetVector (braid_Core core, braid_Int level, braid_Int index, braid_Vector ∗u_ptr)
• braid_Int _braid_USetVector (braid_Core core, braid_Int level, braid_Int index, braid_Vector u, braid_Int move)
• braid_Int _braid_UCommInitBasic (braid_Core core, braid_Int level, braid_Int recv_msg, braid_Int send_msg,

braid_Int send_now)
• braid_Int _braid_UCommInit (braid_Core core, braid_Int level)
• braid_Int _braid_UCommInitF (braid_Core core, braid_Int level)
• braid_Int _braid_UCommWait (braid_Core core, braid_Int level)
• braid_Int _braid_GetInterval (braid_Core core, braid_Int level, braid_Int interval_index, braid_Int ∗flo_ptr, braid_-

Int ∗fhi_ptr, braid_Int ∗ci_ptr)
• braid_Int _braid_AccessVector (braid_Core core, braid_AccessStatus status, braid_Vector u)
• braid_Int _braid_GetUInit (braid_Core core, braid_Int level, braid_Int index, braid_Vector u, braid_Vector ∗ustop-

_ptr)
• braid_Int _braid_Step (braid_Core core, braid_Int level, braid_Int index, braid_Vector ustop, braid_Vector u)
• braid_Int _braid_Residual (braid_Core core, braid_Int level, braid_Int index, braid_Vector ustop, braid_Vector r)
• braid_Int _braid_FASResidual (braid_Core core, braid_Int level, braid_Int index, braid_Vector ustop, braid_Vector

r)
• braid_Int _braid_Coarsen (braid_Core core, braid_Int level, braid_Int f_index, braid_Int c_index, braid_Vector

fvector, braid_Vector ∗cvector)
• braid_Int _braid_RefineBasic (braid_Core core, braid_Int level, braid_Real ∗f_ta, braid_Real ∗c_ta, braid_Vector

cvector, braid_Vector ∗fvector)
• braid_Int _braid_Refine (braid_Core core, braid_Int level, braid_Int f_index, braid_Int c_index, braid_Vector cvec-

tor, braid_Vector ∗fvector)
• braid_Int _braid_GridInit (braid_Core core, braid_Int level, braid_Int ilower, braid_Int iupper, _braid_Grid ∗∗grid-

_ptr)
• braid_Int _braid_GridClean (braid_Core core, _braid_Grid ∗grid)
• braid_Int _braid_GridDestroy (braid_Core core, _braid_Grid ∗grid)
• braid_Int _braid_InitGuess (braid_Core core, braid_Int level)
• braid_Int _braid_ComputeFullRNorm (braid_Core core, braid_Int level, braid_Real ∗return_rnorm)
• braid_Int _braid_FCRelax (braid_Core core, braid_Int level)
• braid_Int _braid_FRestrict (braid_Core core, braid_Int level)
• braid_Int _braid_FInterp (braid_Core core, braid_Int level)
• braid_Int _braid_FRefineSpace (braid_Core core, braid_Int ∗refined_ptr)
• braid_Int _braid_FRefine (braid_Core core, braid_Int ∗refined_ptr)
• braid_Int _braid_FAccess (braid_Core core, braid_Int level, braid_Int done)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

15.1 _braid.h File Reference 79

• braid_Int _braid_InitHierarchy (braid_Core core, _braid_Grid ∗fine_grid, braid_Int refined)
• braid_Int _braid_PrintSpatialNorms (braid_Core core, braid_Real ∗rnorms, braid_Int n)
• braid_Int _braid_CopyFineToCoarse (braid_Core core)
• braid_Int _braid_SetRNorm (braid_Core core, braid_Int iter, braid_Real rnorm)
• braid_Int _braid_GetRNorm (braid_Core core, braid_Int iter, braid_Real ∗rnorm_ptr)
• braid_Int _braid_SetFullRNorm (braid_Core core, braid_Int iter, braid_Real rnorm)
• braid_Int _braid_GetFullRNorm (braid_Core core, braid_Int iter, braid_Real ∗rnorm_ptr)
• braid_Int _braid_DeleteLastResidual (braid_Core core)

Variables

• FILE ∗ _braid_printfile

15.1.1 Detailed Description

Define headers for developer routines. This file contains the headers for developer routines.

15.1.2 Macro Definition Documentation

15.1.2.1 #define _braid_CommHandleElt(handle, elt) ((handle) -> elt)

Accessor for _braid_CommHandle attributes

15.1.2.2 #define _braid_CoreElt(core, elt) ((core) -> elt)

Accessor for _braid_Core attributes

15.1.2.3 #define _braid_CoreFcn(core, fcn) (∗((core) -> fcn))

Accessor for _braid_Core functions

15.1.2.4 #define _braid_GridElt(grid, elt) ((grid) -> elt)

Accessor for _braid_Grid attributes

15.1.2.5 #define _braid_IsCPoint(index, cfactor) (!_braid_IsFPoint(index, cfactor))

Boolean, returns whether a time index is an C-point

15.1.2.6 #define _braid_IsFPoint(index, cfactor) ((index)%(cfactor))

Boolean, returns whether a time index is an F-point

15.1.2.7 #define _braid_MapCoarseToFine(cindex, cfactor, findex) (findex = (cindex)∗(cfactor))

Map a coarse time index to a fine time index, assumes a uniform coarsening factor.

15.1.2.8 #define _braid_MapFineToCoarse(findex, cfactor, cindex) (cindex = (findex)/(cfactor))

Map a fine time index to a coarse time index, assumes a uniform coarsening factor.

15.1.2.9 #define _braid_NextCPoint(index, cfactor) (((braid_Int)((index)+(cfactor)-1)/(cfactor))∗(cfactor))

Returns the index for the next C-point to the right of index (inclusive)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

80 CONTENTS

15.1.3 Function Documentation

15.1.3.1 braid_Int _braid_AccessVector (braid_Core core, braid_AccessStatus status, braid_Vector u)

Call user’s access function in order to give access to XBraid and the current vector. Most commonly, this lets the user
write u to screen, disk, etc... The vector u corresponds to time step index on level. status holds state information about
the current XBraid iteration, time value, etc...

15.1.3.2 braid_Int _braid_Coarsen (braid_Core core, braid_Int level, braid_Int f_index, braid_Int c_index,
braid_Vector fvector, braid_Vector ∗ cvector)

Coarsen in space on level by calling the user’s coarsen function. The vector corresponding to the time step index
f_index on the fine grid is coarsened to the time step index c_index on the coarse grid. The output goes in cvector and
the input vector is fvector.

15.1.3.3 braid_Int _braid_CommRecvInit (braid_Core core, braid_Int level, braid_Int index, braid_Vector ∗ vector_ptr,
_braid_CommHandle ∗∗ handle_ptr)

Initialize a receive to go into vector_ptr for the given time index on level. Also return a comm handle handle_ptr for
querying later, to see if the receive has occurred.

15.1.3.4 braid_Int _braid_CommSendInit (braid_Core core, braid_Int level, braid_Int index, braid_Vector vector,
_braid_CommHandle ∗∗ handle_ptr)

Initialize a send of vector for the given time index on level. Also return a comm handle handle_ptr for querying later, to
see if the send has occurred.

15.1.3.5 braid_Int _braid_CommWait (braid_Core core, _braid_CommHandle ∗∗ handle_ptr)

Block on the comm handle handle_ptr until the MPI operation (send or recv) has completed

15.1.3.6 braid_Int _braid_ComputeFullRNorm (braid_Core core, braid_Int level, braid_Real ∗ return_rnorm)

Compute full temporal residual norm with user-provided residual routine. Output goes in ∗return_rnorm.

15.1.3.7 braid_Int _braid_CopyFineToCoarse (braid_Core core)

Copy the initialized C-points on the fine grid, to all coarse levels. For instance, if a point k on level m corresponds to
point p on level 0, then they are equivalent after this function. The only exception is any spatial coarsening the user
decides to do. This function allows XBraid to skip all work on the first down cycle and start in FMG style on the coarsest
level. Assumes level 0 C-points are initialized.

15.1.3.8 braid_Int _braid_DeleteLastResidual (braid_Core core)

Delete the last residual, for use if F-Refinement is done.

15.1.3.9 braid_Int _braid_FAccess (braid_Core core, braid_Int level, braid_Int done)

Call the user’s access function in order to give access to XBraid and the current vector at grid level and iteration ∗iter.
Most commonly, this lets the user write solutions to screen, disk, etc... The quantity rnorm denotes the last computed
residual norm, and done is a boolean indicating whether XBraid has finished iterating and this is the last Access call.

15.1.3.10 braid_Int _braid_FASResidual (braid_Core core, braid_Int level, braid_Int index, braid_Vector ustop,
braid_Vector r)

Compute FAS residual = f - residual

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

15.1 _braid.h File Reference 81

15.1.3.11 braid_Int _braid_FCRelax (braid_Core core, braid_Int level)

Do nu sweeps of F-then-C relaxation on level

15.1.3.12 braid_Int _braid_FInterp (braid_Core core, braid_Int level)

F-Relax on level and interpolate to level-1

The output is set in the braid_Grid in core, so that the vector u on level is created by interpolating from level+1.

If the user has set spatial refinement, then this user-defined routine is also called.

Parameters

core braid_Core (_braid_Core) struct
level interp from level to level+1

15.1.3.13 braid_Int _braid_FRefine (braid_Core core, braid_Int ∗ refined_ptr)

Create a new fine grid (level 0) and corresponding grid hierarchy by refining the current fine grid based on user-provided
refinement factors. Return the boolean refined_ptr to indicate whether grid refinement was actually done. To simplify
the algorithm, refinement factors are automatically capped to be no greater than the coarsening factor (for level 0). The
grid data is also redistributed to achieve good load balance in the temporal dimension. If the refinement factor is 1 in
each time interval, no refinement is done.

15.1.3.14 braid_Int _braid_FRefineSpace (braid_Core core, braid_Int ∗ refined_ptr)

Call spatial refinement on all local time steps if r_space has been set on the local processor. Returns refined_ptr == 2
if refinment was completed at any point globally, otherwise returns 0. This is a helper function for _braid_FRefine().

15.1.3.15 braid_Int _braid_FRestrict (braid_Core core, braid_Int level)

F-Relax on level and then restrict to level+1

The output is set in the braid_Grid in core, so that the restricted vectors va and fa will be created, representing level+1
versions of the unknown and rhs vectors.

If the user has set spatial coarsening, then this user-defined routine is also called.

If level==0, then rnorm_ptr will contain the residual norm.

Parameters

core braid_Core (_braid_Core) struct
level restrict from level to level+1

15.1.3.16 braid_Int _braid_GetBlockDistInterval (braid_Int npoints, braid_Int nprocs, braid_Int proc, braid_Int ∗
ilower_ptr, braid_Int ∗ iupper_ptr)

Returns the index interval for proc in a blocked data distribution.

15.1.3.17 braid_Int _braid_GetBlockDistProc (braid_Int npoints, braid_Int nprocs, braid_Int index, braid_Int ∗ proc_ptr)

Returns the processor that owns index in a blocked data distribution (returns -1 if index is out of range).

15.1.3.18 braid_Int _braid_GetCFactor (braid_Core core, braid_Int level, braid_Int ∗ cfactor_ptr)

Returns the coarsening factor to use on grid level.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

82 CONTENTS

15.1.3.19 braid_Int _braid_GetDistribution (braid_Core core, braid_Int ∗ ilower_ptr, braid_Int ∗ iupper_ptr)

Returns the index interval for my processor on the finest grid level. For the processor rank calling this function, it returns
the smallest and largest time indices (ilower_ptr and iupper_ptr) that belong to that processor (the indices may be F or
C points).

15.1.3.20 braid_Int _braid_GetFullRNorm (braid_Core core, braid_Int iter, braid_Real ∗ rnorm_ptr)

Same as GetRNorm, but gets full residual norm.

15.1.3.21 braid_Int _braid_GetInterval (braid_Core core, braid_Int level, braid_Int interval_index, braid_Int ∗ flo_ptr,
braid_Int ∗ fhi_ptr, braid_Int ∗ ci_ptr)

Retrieve the time step indices at this level corresponding to a local FC interval given by interval_index. Argument ci_ptr
is the time step index for the C-pt and flo_ptr and fhi_ptr are the smallest and largest F-pt indices in this interval. The
C-pt is always to the right of the F-interval, but neither a C-pt or an F-interval are guaranteed. If the ci_ptr returns a -1,
there is no C-pt. If the flo_ptr is greater than the fhi_ptr, there is no F-interval.

15.1.3.22 braid_Int _braid_GetProc (braid_Core core, braid_Int level, braid_Int index, braid_Int ∗ proc_ptr)

Returns the processor number in proc_ptr on which the time step index lives for the given level. Returns -1 if index is
out of range.

15.1.3.23 braid_Int _braid_GetRNorm (braid_Core core, braid_Int iter, braid_Real ∗ rnorm_ptr)

Get the residual norm for iteration iter. If iter < 0, get the rnorm for the last iteration minus |iter|-1.

15.1.3.24 braid_Int _braid_GetUInit (braid_Core core, braid_Int level, braid_Int index, braid_Vector u, braid_Vector
∗ ustop_ptr)

Return an initial guess in ustop_ptr to use in the step routine for implicit schemes. The value returned depends on the
storage options used. If the return value is NULL, no initial guess is available.

15.1.3.25 braid_Int _braid_GridClean (braid_Core core, _braid_Grid ∗ grid)

Destroy the vectors on grid

15.1.3.26 braid_Int _braid_GridDestroy (braid_Core core, _braid_Grid ∗ grid)

Destroy grid

15.1.3.27 braid_Int _braid_GridInit (braid_Core core, braid_Int level, braid_Int ilower, braid_Int iupper, _braid_Grid
∗∗ grid_ptr)

Create a new grid object grid_ptr with level indicator level. Arguments ilower and iupper correspond to the lower and
upper time index values for this processor on this grid.

15.1.3.28 braid_Int _braid_InitGuess (braid_Core core, braid_Int level)

Set initial guess on level. Only C-pts are initialized on level 0, otherwise stored values are initialized based on restricted
fine-grid values.

15.1.3.29 braid_Int _braid_InitHierarchy (braid_Core core, _braid_Grid ∗ fine_grid, braid_Int refined)

Initialize grid hierarchy with fine_grid serving as the finest grid. Boolean refined indicates whether fine_grid was created
by refining a coarser grid (in the FRefine() routine), which has implications on how to define CF-intervals.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

15.1 _braid.h File Reference 83

15.1.3.30 braid_Int _braid_PrintSpatialNorms (braid_Core core, braid_Real ∗ rnorms, braid_Int n)

Print out the residual norm for every C-point. Processor 0 gathers all the rnorms and prints them in order through a
gatherv operator

15.1.3.31 braid_Int _braid_Refine (braid_Core core, braid_Int level, braid_Int f_index, braid_Int c_index, braid_Vector
cvector, braid_Vector ∗ fvector)

Refine in space on level by calling the user’s refine function. The vector corresponding to the time step index c_index
on the coarse grid is refined to the time step index f_index on the fine grid. The output goes in fvector and the input
vector is cvector.

15.1.3.32 braid_Int _braid_RefineBasic (braid_Core core, braid_Int level, braid_Real ∗ f_ta, braid_Real ∗ c_ta,
braid_Vector cvector, braid_Vector ∗ fvector)

Refine in space (basic routine)

15.1.3.33 braid_Int _braid_Residual (braid_Core core, braid_Int level, braid_Int index, braid_Vector ustop,
braid_Vector r)

Compute residual r

15.1.3.34 braid_Int _braid_SetFullRNorm (braid_Core core, braid_Int iter, braid_Real rnorm)

Same as SetRNorm, but sets full residual norm.

15.1.3.35 braid_Int _braid_SetRNorm (braid_Core core, braid_Int iter, braid_Real rnorm)

Set the residual norm for iteration iter. If iter < 0, set the rnorm for the last iteration minus |iter|-1. Also set the initial
residual norm.

15.1.3.36 braid_Int _braid_Step (braid_Core core, braid_Int level, braid_Int index, braid_Vector ustop, braid_Vector
u)

Integrate one time step at time step index to time step index+1.

15.1.3.37 braid_Int _braid_UCommInit (braid_Core core, braid_Int level)

This routine initiates communication under the assumption that work will be done on all intervals (F or C) on level. It
posts a receive for the point to the left of ilower (regardless whether ilower is F or C), and it posts a send of iupper if
iupper is a C point.

15.1.3.38 braid_Int _braid_UCommInitBasic (braid_Core core, braid_Int level, braid_Int recv_msg, braid_Int send_msg,
braid_Int send_now)

Basic communication (from the left, to the right). Arguments recv_msg and send_msg are booleans that indicate
whether or not to initiate a receive from the left and a send to the right respectively. Argument send_now indicates that
the send should be initiated immediately.

15.1.3.39 braid_Int _braid_UCommInitF (braid_Core core, braid_Int level)

This routine initiates communication under the assumption that work will be done on only F-pt intervals on level. It only
posts a receive for the point to the left of ilower if ilower is an F point, and it posts a send of iupper if iupper is a C point.

15.1.3.40 braid_Int _braid_UCommWait (braid_Core core, braid_Int level)

Finish up communication. On level, wait on both the recv and send handles at this level.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

84 CONTENTS

15.1.3.41 braid_Int _braid_UGetIndex (braid_Core core, braid_Int level, braid_Int index, braid_Int ∗ uindex_ptr,
braid_Int ∗ store_flag_ptr)

Returns an index into the local u-vector for grid level at point index, and information on the storage status of the point. If
nothing is stored at that point, uindex = -1 and store_flag = -2. If only the shell is stored store_flag = -1, and if the whole
u-vector is stored, store_flag = 0.

15.1.3.42 braid_Int _braid_UGetVector (braid_Core core, braid_Int level, braid_Int index, braid_Vector ∗ u_ptr)

Returns a copy of the u-vector on grid level at point index. If index is my "receive index" (as set by UCommInit(), for
example), the u-vector will be received from a neighbor processor. If the u-vector is not stored, NULL is returned.

15.1.3.43 braid_Int _braid_UGetVectorRef (braid_Core core, braid_Int level, braid_Int index, braid_Vector ∗ u_ptr)

Returns a reference to the local u-vector on grid level at point index. If the u-vector is not stored, returns NULL.

15.1.3.44 braid_Int _braid_USetVector (braid_Core core, braid_Int level, braid_Int index, braid_Vector u, braid_Int
move)

Stores the u-vector on grid level at point index. If index is my "send index", a send is initiated to a neighbor processor.
If move is true, the u-vector is moved into core storage instead of copied. If the u-vector is not stored, nothing is done.

15.1.3.45 braid_Int _braid_USetVectorRef (braid_Core core, braid_Int level, braid_Int index, braid_Vector u)

Stores a reference to the local u-vector on grid level at point index. If the u-vector is not stored, nothing is done.

15.1.4 Variable Documentation

15.1.4.1 FILE∗ _braid_printfile

This is the print file for redirecting stdout for all XBraid screen output

15.2 braid.h File Reference

Macros

• #define braid_FMANGLE 1
• #define braid_Fortran_SpatialCoarsen 0
• #define braid_Fortran_Residual 1
• #define braid_Fortran_TimeGrid 1
• #define braid_INVALID_RNORM -1
• #define braid_ERROR_GENERIC 1 /∗ generic error ∗/
• #define braid_ERROR_MEMORY 2 /∗ unable to allocate memory ∗/
• #define braid_ERROR_ARG 4 /∗ argument error ∗/

Typedefs

• typedef struct _braid_App_struct ∗ braid_App
• typedef struct

_braid_Vector_struct ∗ braid_Vector
• typedef braid_Int(∗ braid_PtFcnStep)(braid_App app, braid_Vector ustop, braid_Vector fstop, braid_Vector u,

braid_StepStatus status)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

15.2 braid.h File Reference 85

• typedef braid_Int(∗ braid_PtFcnInit)(braid_App app, braid_Real t, braid_Vector ∗u_ptr)
• typedef braid_Int(∗ braid_PtFcnClone)(braid_App app, braid_Vector u, braid_Vector ∗v_ptr)
• typedef braid_Int(∗ braid_PtFcnFree)(braid_App app, braid_Vector u)
• typedef braid_Int(∗ braid_PtFcnSum)(braid_App app, braid_Real alpha, braid_Vector x, braid_Real beta, braid-

_Vector y)
• typedef braid_Int(∗ braid_PtFcnSpatialNorm)(braid_App app, braid_Vector u, braid_Real ∗norm_ptr)
• typedef braid_Int(∗ braid_PtFcnAccess)(braid_App app, braid_Vector u, braid_AccessStatus status)
• typedef braid_Int(∗ braid_PtFcnBufSize)(braid_App app, braid_Int ∗size_ptr, braid_BufferStatus status)
• typedef braid_Int(∗ braid_PtFcnBufPack)(braid_App app, braid_Vector u, void ∗buffer, braid_BufferStatus status)
• typedef braid_Int(∗ braid_PtFcnBufUnpack)(braid_App app, void ∗buffer, braid_Vector ∗u_ptr, braid_BufferStatus

status)
• typedef braid_Int(∗ braid_PtFcnResidual)(braid_App app, braid_Vector ustop, braid_Vector r, braid_StepStatus

status)
• typedef braid_Int(∗ braid_PtFcnSCoarsen)(braid_App app, braid_Vector fu, braid_Vector ∗cu_ptr, braid_-

CoarsenRefStatus status)
• typedef braid_Int(∗ braid_PtFcnSRefine)(braid_App app, braid_Vector cu, braid_Vector ∗fu_ptr, braid_Coarsen-

RefStatus status)
• typedef braid_Int(∗ braid_PtFcnSInit)(braid_App app, braid_Real t, braid_Vector ∗u_ptr)
• typedef braid_Int(∗ braid_PtFcnSClone)(braid_App app, braid_Vector u, braid_Vector ∗v_ptr)
• typedef braid_Int(∗ braid_PtFcnSFree)(braid_App app, braid_Vector u)
• typedef braid_Int(∗ braid_PtFcnTimeGrid)(braid_App app, braid_Real ∗ta, braid_Int ∗ilower, braid_Int ∗iupper)
• typedef struct _braid_Core_struct ∗ braid_Core

Functions

• braid_Int braid_Init (MPI_Comm comm_world, MPI_Comm comm, braid_Real tstart, braid_Real tstop, braid_-
Int ntime, braid_App app, braid_PtFcnStep step, braid_PtFcnInit init, braid_PtFcnClone clone, braid_PtFcnFree
free, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnAccess access, braid_PtFcnBuf-
Size bufsize, braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack bufunpack, braid_Core ∗core_ptr)

• braid_Int braid_Drive (braid_Core core)
• braid_Int braid_Destroy (braid_Core core)
• braid_Int braid_PrintStats (braid_Core core)
• braid_Int braid_SetMaxLevels (braid_Core core, braid_Int max_levels)
• braid_Int braid_SetSkip (braid_Core core, braid_Int skip)
• braid_Int braid_SetRefine (braid_Core core, braid_Int refine)
• braid_Int braid_SetMaxRefinements (braid_Core core, braid_Int max_refinements)
• braid_Int braid_SetTPointsCutoff (braid_Core core, braid_Int tpoints_cutoff)
• braid_Int braid_SetMinCoarse (braid_Core core, braid_Int min_coarse)
• braid_Int braid_SetAbsTol (braid_Core core, braid_Real atol)
• braid_Int braid_SetRelTol (braid_Core core, braid_Real rtol)
• braid_Int braid_SetNRelax (braid_Core core, braid_Int level, braid_Int nrelax)
• braid_Int braid_SetCFactor (braid_Core core, braid_Int level, braid_Int cfactor)
• braid_Int braid_SetMaxIter (braid_Core core, braid_Int max_iter)
• braid_Int braid_SetFMG (braid_Core core)
• braid_Int braid_SetNFMG (braid_Core core, braid_Int k)
• braid_Int braid_SetNFMGVcyc (braid_Core core, braid_Int nfmg_Vcyc)
• braid_Int braid_SetStorage (braid_Core core, braid_Int storage)
• braid_Int braid_SetTemporalNorm (braid_Core core, braid_Int tnorm)
• braid_Int braid_SetResidual (braid_Core core, braid_PtFcnResidual residual)
• braid_Int braid_SetFullRNormRes (braid_Core core, braid_PtFcnResidual residual)
• braid_Int braid_SetTimeGrid (braid_Core core, braid_PtFcnTimeGrid tgrid)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

86 CONTENTS

• braid_Int braid_SetSpatialCoarsen (braid_Core core, braid_PtFcnSCoarsen scoarsen)
• braid_Int braid_SetSpatialRefine (braid_Core core, braid_PtFcnSRefine srefine)
• braid_Int braid_SetPrintLevel (braid_Core core, braid_Int print_level)
• braid_Int braid_SetPrintFile (braid_Core core, const char ∗printfile_name)
• braid_Int braid_SetDefaultPrintFile (braid_Core core)
• braid_Int braid_SetAccessLevel (braid_Core core, braid_Int access_level)
• braid_Int braid_SplitCommworld (const MPI_Comm ∗comm_world, braid_Int px, MPI_Comm ∗comm_x, MPI_-

Comm ∗comm_t)
• braid_Int braid_SetShell (braid_Core core, braid_PtFcnSInit sinit, braid_PtFcnSClone sclone, braid_PtFcnSFree

sfree)
• braid_Int braid_GetNumIter (braid_Core core, braid_Int ∗niter_ptr)
• braid_Int braid_GetRNorms (braid_Core core, braid_Int ∗nrequest_ptr, braid_Real ∗rnorms)
• braid_Int braid_GetNLevels (braid_Core core, braid_Int ∗nlevels_ptr)
• braid_Int braid_GetSpatialAccuracy (braid_StepStatus status, braid_Real loose_tol, braid_Real tight_tol, braid_-

Real ∗tol_ptr)
• braid_Int braid_SetSeqSoln (braid_Core core, braid_Int seq_soln)

15.2.1 Detailed Description

Define headers for user interface routines. This file contains routines used to allow the user to initialize, run and get and
set a XBraid solver.

15.3 braid_defs.h File Reference

Macros

• #define braid_Int_Max INT_MAX;
• #define braid_Int_Min INT_MIN;
• #define braid_MPI_REAL MPI_DOUBLE
• #define braid_MPI_INT MPI_INT
• #define _braid_Error(IERR, msg) _braid_ErrorHandler(__FILE__, __LINE__, IERR, msg)
• #define _braid_ErrorInArg(IARG, msg) _braid_Error(HYPRE_ERROR_ARG | IARG<<3, msg)
• #define _braid_TAlloc(type, count) ((type ∗)malloc((size_t)(sizeof(type) ∗ (count))))
• #define _braid_CTAlloc(type, count) ((type ∗)calloc((size_t)(count), (size_t)sizeof(type)))
• #define _braid_TReAlloc(ptr, type, count) ((type ∗)realloc((char ∗)ptr, (size_t)(sizeof(type) ∗ (count))))
• #define _braid_TFree(ptr) (free((char ∗)ptr), ptr = NULL)
• #define _braid_max(a, b) (((a)<(b)) ? (b) : (a))
• #define _braid_min(a, b) (((a)<(b)) ? (a) : (b))
• #define braid_isnan(a) (a != a)

Typedefs

• typedef int braid_Int
• typedef double braid_Real

Functions

• void _braid_ErrorHandler (const char ∗filename, braid_Int line, braid_Int ierr, const char ∗msg)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

15.3 braid_defs.h File Reference 87

Variables

• braid_Int _braid_error_flag

15.3.1 Detailed Description

Definitions of types, error flags, etc...

15.3.2 Macro Definition Documentation

15.3.2.1 #define _braid_CTAlloc(type, count) ((type ∗)calloc((size_t)(count), (size_t)sizeof(type)))

Allocation macro

15.3.2.2 #define _braid_Error(IERR, msg) _braid_ErrorHandler(__FILE__, __LINE__, IERR, msg)

15.3.2.3 #define _braid_ErrorInArg(IARG, msg) _braid_Error(HYPRE_ERROR_ARG | IARG<<3, msg)

15.3.2.4 #define _braid_max(a, b) (((a)<(b)) ? (b) : (a))

15.3.2.5 #define _braid_min(a, b) (((a)<(b)) ? (a) : (b))

15.3.2.6 #define _braid_TAlloc(type, count) ((type ∗)malloc((size_t)(sizeof(type) ∗ (count))))

Allocation macro

15.3.2.7 #define _braid_TFree(ptr) (free((char ∗)ptr), ptr = NULL)

Free memory macro

15.3.2.8 #define _braid_TReAlloc(ptr, type, count) ((type ∗)realloc((char ∗)ptr, (size_t)(sizeof(type) ∗ (count))))

Re-allocation macro

15.3.2.9 #define braid_Int_Max INT_MAX;

15.3.2.10 #define braid_Int_Min INT_MIN;

15.3.2.11 #define braid_isnan(a) (a != a)

15.3.2.12 #define braid_MPI_INT MPI_INT

15.3.2.13 #define braid_MPI_REAL MPI_DOUBLE

15.3.3 Typedef Documentation

15.3.3.1 typedef int braid_Int

Defines integer type

15.3.3.2 typedef double braid_Real

Defines floating point type

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

88 CONTENTS

15.3.4 Function Documentation

15.3.4.1 void _braid_ErrorHandler (const char ∗ filename, braid_Int line, braid_Int ierr, const char ∗ msg)

15.3.5 Variable Documentation

15.3.5.1 braid_Int _braid_error_flag

This is the global XBraid error flag. If it is ever nonzero, an error has occurred.

15.4 braid_status.h File Reference

Macros

• #define ACCESSOR_HEADER_GET1(stype, param, vtype1) braid_Int braid_##stype##StatusGet##param(braid-
##stype##Status s, braid##vtype1 ∗v1);

• #define ACCESSOR_HEADER_GET2(stype, param, vtype1, vtype2) braid_Int braid_##stype##Status-
Get##param(braid_##stype##Status s, braid_##vtype1 ∗v1, braid_##vtype2 ∗v2);

• #define ACCESSOR_HEADER_GET4(stype, param, vtype1, vtype2, vtype3, vtype4) braid_Int braid_-
##stype##StatusGet##param(braid_##stype##Status s, braid_##vtype1 ∗v1, braid_##vtype2 ∗v2, braid_-
##vtype3 ∗v3, braid_##vtype4 ∗v4);

• #define ACCESSOR_HEADER_GET5(stype, param, vtype1, vtype2, vtype3, vtype4, vtype5) braid_Int braid-
##stype##StatusGet##param(braid##stype##Status s, braid_##vtype1 ∗v1, braid_##vtype2 ∗v2, braid_-
##vtype3 ∗v3, braid_##vtype4 ∗v4, braid_##vtype5 ∗v5);

• #define ACCESSOR_HEADER_SET1(stype, param, vtype1) braid_Int braid_##stype##StatusSet##param(braid-
##stype##Status s, braid##vtype1 v1);

• #define braid_ASCaller_FInterp 0
• #define braid_ASCaller_FRestrict 1
• #define braid_ASCaller_FRefine 2
• #define braid_ASCaller_FAccess 3

Typedefs

• typedef struct
_braid_Status_struct ∗ braid_Status

• typedef struct
_braid_AccessStatus_struct ∗ braid_AccessStatus

• typedef struct
_braid_StepStatus_struct ∗ braid_StepStatus

• typedef struct
_braid_CoarsenRefStatus_struct ∗ braid_CoarsenRefStatus

• typedef struct
_braid_BufferStatus_struct ∗ braid_BufferStatus

Functions

• braid_Int braid_StatusGetT (braid_Status status, braid_Real ∗t_ptr)
• braid_Int braid_StatusGetTIndex (braid_Status status, braid_Int ∗idx_ptr)
• braid_Int braid_StatusGetIter (braid_Status status, braid_Int ∗iter_ptr)
• braid_Int braid_StatusGetLevel (braid_Status status, braid_Int ∗level_ptr)
• braid_Int braid_StatusGetNRefine (braid_Status status, braid_Int ∗nrefine_ptr)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

15.4 braid_status.h File Reference 89

• braid_Int braid_StatusGetNTPoints (braid_Status status, braid_Int ∗ntpoints_ptr)
• braid_Int braid_StatusGetResidual (braid_Status status, braid_Real ∗rnorm_ptr)
• braid_Int braid_StatusGetDone (braid_Status status, braid_Int ∗done_ptr)
• braid_Int braid_StatusGetTILD (braid_Status status, braid_Real ∗t_ptr, braid_Int ∗iter_ptr, braid_Int ∗level_ptr,

braid_Int ∗done_ptr)
• braid_Int braid_StatusGetWrapperTest (braid_Status status, braid_Int ∗wtest_ptr)
• braid_Int braid_StatusGetCallingFunction (braid_Status status, braid_Int ∗cfunction_ptr)
• braid_Int braid_StatusGetCTprior (braid_Status status, braid_Real ∗ctprior_ptr)
• braid_Int braid_StatusGetCTstop (braid_Status status, braid_Real ∗ctstop_ptr)
• braid_Int braid_StatusGetFTprior (braid_Status status, braid_Real ∗ftprior_ptr)
• braid_Int braid_StatusGetFTstop (braid_Status status, braid_Real ∗ftstop_ptr)
• braid_Int braid_StatusGetTpriorTstop (braid_Status status, braid_Real ∗t_ptr, braid_Real ∗ftprior_ptr, braid_Real
∗ftstop_ptr, braid_Real ∗ctprior_ptr, braid_Real ∗ctstop_ptr)

• braid_Int braid_StatusGetTstop (braid_Status status, braid_Real ∗tstop_ptr)
• braid_Int braid_StatusGetTstartTstop (braid_Status status, braid_Real ∗tstart_ptr, braid_Real ∗tstop_ptr)
• braid_Int braid_StatusGetTol (braid_Status status, braid_Real ∗tol_ptr)
• braid_Int braid_StatusGetRNorms (braid_Status status, braid_Int ∗nrequest_ptr, braid_Real ∗rnorms_ptr)
• braid_Int braid_StatusGetOldFineTolx (braid_Status status, braid_Real ∗old_fine_tolx_ptr)
• braid_Int braid_StatusSetOldFineTolx (braid_Status status, braid_Real old_fine_tolx)
• braid_Int braid_StatusSetTightFineTolx (braid_Status status, braid_Real tight_fine_tolx)
• braid_Int braid_StatusSetRFactor (braid_Status status, braid_Real rfactor)
• braid_Int braid_StatusSetRSpace (braid_Status status, braid_Real r_space)
• braid_Int braid_StatusGetMessageType (braid_Status status, braid_Int ∗messagetype_ptr)
• braid_Int braid_StatusSetSize (braid_Status status, braid_Real size)
• braid_Int braid_AccessStatusGetT (braid_AccessStatus s, braid_Real ∗v1)
• braid_Int braid_AccessStatusGetTIndex (braid_AccessStatus s, braid_Int ∗v1)
• braid_Int braid_AccessStatusGetIter (braid_AccessStatus s, braid_Int ∗v1)
• braid_Int braid_AccessStatusGetLevel (braid_AccessStatus s, braid_Int ∗v1)
• braid_Int braid_AccessStatusGetNRefine (braid_AccessStatus s, braid_Int ∗v1)
• braid_Int braid_AccessStatusGetNTPoints (braid_AccessStatus s, braid_Int ∗v1)
• braid_Int braid_AccessStatusGetResidual (braid_AccessStatus s, braid_Real ∗v1)
• braid_Int braid_AccessStatusGetDone (braid_AccessStatus s, braid_Int ∗v1)
• braid_Int braid_AccessStatusGetTILD (braid_AccessStatus s, braid_Real ∗v1, braid_Int ∗v2, braid_Int ∗v3, braid-

_Int ∗v4)
• braid_Int braid_AccessStatusGetWrapperTest (braid_AccessStatus s, braid_Int ∗v1)
• braid_Int braid_AccessStatusGetCallingFunction (braid_AccessStatus s, braid_Int ∗v1)
• braid_Int braid_CoarsenRefStatusGetT (braid_CoarsenRefStatus s, braid_Real ∗v1)
• braid_Int braid_CoarsenRefStatusGetTIndex (braid_CoarsenRefStatus s, braid_Int ∗v1)
• braid_Int braid_CoarsenRefStatusGetIter (braid_CoarsenRefStatus s, braid_Int ∗v1)
• braid_Int braid_CoarsenRefStatusGetLevel (braid_CoarsenRefStatus s, braid_Int ∗v1)
• braid_Int braid_CoarsenRefStatusGetNRefine (braid_CoarsenRefStatus s, braid_Int ∗v1)
• braid_Int braid_CoarsenRefStatusGetNTPoints (braid_CoarsenRefStatus s, braid_Int ∗v1)
• braid_Int braid_CoarsenRefStatusGetCTprior (braid_CoarsenRefStatus s, braid_Real ∗v1)
• braid_Int braid_CoarsenRefStatusGetCTstop (braid_CoarsenRefStatus s, braid_Real ∗v1)
• braid_Int braid_CoarsenRefStatusGetFTprior (braid_CoarsenRefStatus s, braid_Real ∗v1)
• braid_Int braid_CoarsenRefStatusGetFTstop (braid_CoarsenRefStatus s, braid_Real ∗v1)
• braid_Int braid_CoarsenRefStatusGetTpriorTstop (braid_CoarsenRefStatus s, braid_Real ∗v1, braid_Real ∗v2,

braid_Real ∗v3, braid_Real ∗v4, braid_Real ∗v5)
• braid_Int braid_StepStatusGetT (braid_StepStatus s, braid_Real ∗v1)
• braid_Int braid_StepStatusGetTIndex (braid_StepStatus s, braid_Int ∗v1)
• braid_Int braid_StepStatusGetIter (braid_StepStatus s, braid_Int ∗v1)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

90 CONTENTS

• braid_Int braid_StepStatusGetLevel (braid_StepStatus s, braid_Int ∗v1)
• braid_Int braid_StepStatusGetNRefine (braid_StepStatus s, braid_Int ∗v1)
• braid_Int braid_StepStatusGetNTPoints (braid_StepStatus s, braid_Int ∗v1)
• braid_Int braid_StepStatusGetTstop (braid_StepStatus s, braid_Real ∗v1)
• braid_Int braid_StepStatusGetTstartTstop (braid_StepStatus s, braid_Real ∗v1, braid_Real ∗v2)
• braid_Int braid_StepStatusGetTol (braid_StepStatus s, braid_Real ∗v1)
• braid_Int braid_StepStatusGetRNorms (braid_StepStatus s, braid_Int ∗v1, braid_Real ∗v2)
• braid_Int braid_StepStatusGetOldFineTolx (braid_StepStatus s, braid_Real ∗v1)
• braid_Int braid_StepStatusSetOldFineTolx (braid_StepStatus s, braid_Real v1)
• braid_Int braid_StepStatusSetTightFineTolx (braid_StepStatus s, braid_Real v1)
• braid_Int braid_StepStatusSetRFactor (braid_StepStatus s, braid_Real v1)
• braid_Int braid_StepStatusSetRSpace (braid_StepStatus s, braid_Real v1)
• braid_Int braid_BufferStatusGetMessageType (braid_BufferStatus s, braid_Int ∗v1)
• braid_Int braid_BufferStatusSetSize (braid_BufferStatus s, braid_Real v1)

15.4.1 Detailed Description

Define headers for XBraid status structures and headers for the user functions allowing the user to get/set status
structure values.

15.4.2 Macro Definition Documentation

15.4.2.1 #define ACCESSOR_HEADER_GET1(stype, param, vtype1) braid_Int braid_##stype##StatusGet##param(braid_-
##stype##Status s, braid_##vtype1 ∗v1);

Macros allowing for auto-generation of ‘inherited’ StatusGet functions

15.4.2.2 #define ACCESSOR_HEADER_GET2(stype, param, vtype1, vtype2) braid_Int
braid_##stype##StatusGet##param(braid_##stype##Status s, braid_##vtype1 ∗v1, braid_##vtype2 ∗v2);

15.4.2.3 #define ACCESSOR_HEADER_GET4(stype, param, vtype1, vtype2, vtype3, vtype4) braid_Int
braid_##stype##StatusGet##param(braid_##stype##Status s, braid_##vtype1 ∗v1, braid_##vtype2 ∗v2, braid_##vtype3 ∗v3,
braid_##vtype4 ∗v4);

15.4.2.4 #define ACCESSOR_HEADER_GET5(stype, param, vtype1, vtype2, vtype3, vtype4, vtype5) braid_Int
braid_##stype##StatusGet##param(braid_##stype##Status s, braid_##vtype1 ∗v1, braid_##vtype2 ∗v2, braid_##vtype3 ∗v3,
braid_##vtype4 ∗v4, braid_##vtype5 ∗v5);

15.4.2.5 #define ACCESSOR_HEADER_SET1(stype, param, vtype1) braid_Int braid_##stype##StatusSet##param(braid_-
##stype##Status s, braid_##vtype1 v1);

15.5 braid_test.h File Reference

Functions

• braid_Int braid_TestInitAccess (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit init,
braid_PtFcnAccess access, braid_PtFcnFree free)

• braid_Int braid_TestClone (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit init,
braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone)

• braid_Int braid_TestSum (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit init, braid-
_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

15.5 braid_test.h File Reference 91

• braid_Int braid_TestSpatialNorm (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit
init, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm)

• braid_Int braid_TestBuf (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit init, braid_-
PtFcnFree free, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnBufSize bufsize, braid-
_PtFcnBufPack bufpack, braid_PtFcnBufUnpack bufunpack)

• braid_Int braid_TestCoarsenRefine (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_Real
fdt, braid_Real cdt, braid_PtFcnInit init, braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone
clone, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnSCoarsen coarsen, braid_Pt-
FcnSRefine refine)

• braid_Int braid_TestResidual (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_Real dt, braid-
_PtFcnInit myinit, braid_PtFcnAccess myaccess, braid_PtFcnFree myfree, braid_PtFcnClone clone, braid_Pt-
FcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnResidual residual, braid_PtFcnStep step)

• braid_Int braid_TestAll (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_Real fdt, braid_-
Real cdt, braid_PtFcnInit init, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum, braid_Pt-
FcnSpatialNorm spatialnorm, braid_PtFcnBufSize bufsize, braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack
bufunpack, braid_PtFcnSCoarsen coarsen, braid_PtFcnSRefine refine, braid_PtFcnResidual residual, braid_Pt-
FcnStep step)

15.5.1 Detailed Description

Define headers for XBraid test routines. This file contains routines used to test a user’s XBraid wrapper routines one-
by-one.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

Index

_braid.h, 77
_braid_AccessVector, 80
_braid_Coarsen, 80
_braid_CommHandleElt, 79
_braid_CommRecvInit, 80
_braid_CommSendInit, 80
_braid_CommWait, 80
_braid_ComputeFullRNorm, 80
_braid_CopyFineToCoarse, 80
_braid_CoreElt, 79
_braid_CoreFcn, 79
_braid_DeleteLastResidual, 80
_braid_FASResidual, 80
_braid_FAccess, 80
_braid_FCRelax, 80
_braid_FInterp, 81
_braid_FRefine, 81
_braid_FRefineSpace, 81
_braid_FRestrict, 81
_braid_GetBlockDistInterval, 81
_braid_GetBlockDistProc, 81
_braid_GetCFactor, 81
_braid_GetDistribution, 81
_braid_GetFullRNorm, 82
_braid_GetInterval, 82
_braid_GetProc, 82
_braid_GetRNorm, 82
_braid_GetUInit, 82
_braid_GridClean, 82
_braid_GridDestroy, 82
_braid_GridElt, 79
_braid_GridInit, 82
_braid_InitGuess, 82
_braid_InitHierarchy, 82
_braid_IsCPoint, 79
_braid_IsFPoint, 79
_braid_MapCoarseToFine, 79
_braid_MapFineToCoarse, 79
_braid_NextCPoint, 79
_braid_PrintSpatialNorms, 82
_braid_Refine, 83
_braid_RefineBasic, 83
_braid_Residual, 83
_braid_SetFullRNorm, 83
_braid_SetRNorm, 83
_braid_Step, 83
_braid_UCommInit, 83
_braid_UCommInitBasic, 83
_braid_UCommInitF, 83
_braid_UCommWait, 83
_braid_UGetIndex, 83

_braid_UGetVector, 84
_braid_UGetVectorRef, 84
_braid_USetVector, 84
_braid_USetVectorRef, 84
_braid_printfile, 84

_braid_AccessVector
_braid.h, 80

_braid_CTAlloc
braid_defs.h, 87

_braid_Coarsen
_braid.h, 80

_braid_CommHandle, 67
buffer, 67
num_requests, 67
request_type, 67
requests, 67
status, 67
vector_ptr, 67

_braid_CommHandleElt
_braid.h, 79

_braid_CommRecvInit
_braid.h, 80

_braid_CommSendInit
_braid.h, 80

_braid_CommWait
_braid.h, 80

_braid_ComputeFullRNorm
_braid.h, 80

_braid_CopyFineToCoarse
_braid.h, 80

_braid_Core, 67
access, 69
access_level, 69
app, 69
bufpack, 69
bufsize, 69
bufunpack, 70
c_tprior, 70
c_tstop, 70
calling_function, 70
cfactors, 70
cfdefault, 70
clone, 70
comm, 70
comm_world, 70
done, 70
f_tprior, 70
f_tstop, 70
fmg, 70
free, 70
full_rnorm0, 70

INDEX 93

full_rnorm_res, 71
full_rnorms, 71
globaltime, 71
grids, 71
gupper, 71
idx, 71
init, 71
level, 71
localtime, 71
max_iter, 71
max_levels, 71
max_refinements, 71
messagetype, 71
min_coarse, 71
myid, 72
myid_world, 72
nfmg, 72
nfmg_Vcyc, 72
niter, 72
nlevels, 72
nrdefault, 72
nrefine, 72
nrels, 72
ntime, 72
old_fine_tolx, 72
print_level, 72
r_space, 72
refine, 72
residual, 73
rfactor, 73
rfactors, 73
rnorm, 73
rnorm0, 73
rnorms, 73
rstopped, 73
rtol, 73
sclone, 73
scoarsen, 73
seq_soln, 73
sfree, 73
sinit, 73
size_buffer, 73
skip, 74
spatialnorm, 74
srefine, 74
step, 74
storage, 74
sum, 74
t, 74
tgrid, 74
tight_fine_tolx, 74
tnext, 74
tnorm, 74
tnorm_a, 74

tol, 74
tpoints_cutoff, 74
tstart, 75
tstop, 75
useshell, 75
wrapper_test, 75

_braid_CoreElt
_braid.h, 79

_braid_CoreFcn
_braid.h, 79

_braid_DeleteLastResidual
_braid.h, 80

_braid_Error
braid_defs.h, 87

_braid_ErrorHandler
braid_defs.h, 88

_braid_ErrorInArg
braid_defs.h, 87

_braid_FASResidual
_braid.h, 80

_braid_FAccess
_braid.h, 80

_braid_FCRelax
_braid.h, 80

_braid_FInterp
_braid.h, 81

_braid_FRefine
_braid.h, 81

_braid_FRefineSpace
_braid.h, 81

_braid_FRestrict
_braid.h, 81

_braid_GetBlockDistInterval
_braid.h, 81

_braid_GetBlockDistProc
_braid.h, 81

_braid_GetCFactor
_braid.h, 81

_braid_GetDistribution
_braid.h, 81

_braid_GetFullRNorm
_braid.h, 82

_braid_GetInterval
_braid.h, 82

_braid_GetProc
_braid.h, 82

_braid_GetRNorm
_braid.h, 82

_braid_GetUInit
_braid.h, 82

_braid_Grid, 75
cfactor, 76
clower, 76
cupper, 76

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

94 INDEX

fa, 76
fa_alloc, 76
gupper, 76
ilower, 76
iupper, 76
level, 76
ncpoints, 76
nupoints, 76
recv_handle, 76
recv_index, 76
send_handle, 76
send_index, 76
ta, 77
ta_alloc, 77
ua, 77
ua_alloc, 77
va, 77
va_alloc, 77

_braid_GridClean
_braid.h, 82

_braid_GridDestroy
_braid.h, 82

_braid_GridElt
_braid.h, 79

_braid_GridInit
_braid.h, 82

_braid_InitGuess
_braid.h, 82

_braid_InitHierarchy
_braid.h, 82

_braid_IsCPoint
_braid.h, 79

_braid_IsFPoint
_braid.h, 79

_braid_MapCoarseToFine
_braid.h, 79

_braid_MapFineToCoarse
_braid.h, 79

_braid_NextCPoint
_braid.h, 79

_braid_PrintSpatialNorms
_braid.h, 82

_braid_Refine
_braid.h, 83

_braid_RefineBasic
_braid.h, 83

_braid_Residual
_braid.h, 83

_braid_SetFullRNorm
_braid.h, 83

_braid_SetRNorm
_braid.h, 83

_braid_Step
_braid.h, 83

_braid_TAlloc
braid_defs.h, 87

_braid_TFree
braid_defs.h, 87

_braid_TReAlloc
braid_defs.h, 87

_braid_UCommInit
_braid.h, 83

_braid_UCommInitBasic
_braid.h, 83

_braid_UCommInitF
_braid.h, 83

_braid_UCommWait
_braid.h, 83

_braid_UGetIndex
_braid.h, 83

_braid_UGetVector
_braid.h, 84

_braid_UGetVectorRef
_braid.h, 84

_braid_USetVector
_braid.h, 84

_braid_USetVectorRef
_braid.h, 84

_braid_error_flag
braid_defs.h, 88

_braid_max
braid_defs.h, 87

_braid_min
braid_defs.h, 87

_braid_printfile
_braid.h, 84

access
_braid_Core, 69

access_level
_braid_Core, 69

app
_braid_Core, 69

braid.h, 84
braid_ASCaller_FAccess

XBraid status macros, 61
braid_ASCaller_FInterp

XBraid status macros, 61
braid_ASCaller_FRefine

XBraid status macros, 61
braid_ASCaller_FRestrict

XBraid status macros, 61
braid_AccessStatus

XBraid status structures, 50
braid_AccessStatusGetCallingFunction

Inherited XBraid status routines, 59
braid_AccessStatusGetDone

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

INDEX 95

Inherited XBraid status routines, 59
braid_AccessStatusGetIter

Inherited XBraid status routines, 59
braid_AccessStatusGetLevel

Inherited XBraid status routines, 59
braid_AccessStatusGetNRefine

Inherited XBraid status routines, 59
braid_AccessStatusGetNTPoints

Inherited XBraid status routines, 59
braid_AccessStatusGetResidual

Inherited XBraid status routines, 59
braid_AccessStatusGetT

Inherited XBraid status routines, 59
braid_AccessStatusGetTILD

Inherited XBraid status routines, 59
braid_AccessStatusGetTIndex

Inherited XBraid status routines, 59
braid_AccessStatusGetWrapperTest

Inherited XBraid status routines, 59
braid_App

User-written routines, 37
braid_BufferStatus

XBraid status structures, 50
braid_BufferStatusGetMessageType

Inherited XBraid status routines, 59
braid_BufferStatusSetSize

Inherited XBraid status routines, 59
braid_CoarsenRefStatus

XBraid status structures, 50
braid_CoarsenRefStatusGetCTprior

Inherited XBraid status routines, 59
braid_CoarsenRefStatusGetCTstop

Inherited XBraid status routines, 59
braid_CoarsenRefStatusGetFTprior

Inherited XBraid status routines, 59
braid_CoarsenRefStatusGetFTstop

Inherited XBraid status routines, 59
braid_CoarsenRefStatusGetIter

Inherited XBraid status routines, 59
braid_CoarsenRefStatusGetLevel

Inherited XBraid status routines, 59
braid_CoarsenRefStatusGetNRefine

Inherited XBraid status routines, 59
braid_CoarsenRefStatusGetNTPoints

Inherited XBraid status routines, 59
braid_CoarsenRefStatusGetT

Inherited XBraid status routines, 59
braid_CoarsenRefStatusGetTIndex

Inherited XBraid status routines, 59
braid_CoarsenRefStatusGetTpriorTstop

Inherited XBraid status routines, 59
braid_Core

General Interface routines, 42
braid_Destroy

General Interface routines, 42
braid_Drive

General Interface routines, 42
braid_ERROR_ARG

Error Codes, 36
braid_ERROR_GENERIC

Error Codes, 36
braid_ERROR_MEMORY

Error Codes, 36
braid_FMANGLE

Fortran 90 interface options, 35
braid_Fortran_Residual

Fortran 90 interface options, 35
braid_Fortran_SpatialCoarsen

Fortran 90 interface options, 35
braid_Fortran_TimeGrid

Fortran 90 interface options, 35
braid_GetNLevels

General Interface routines, 42
braid_GetNumIter

General Interface routines, 42
braid_GetRNorms

General Interface routines, 42
braid_GetSpatialAccuracy

General Interface routines, 43
braid_INVALID_RNORM

Error Codes, 36
braid_Init

General Interface routines, 43
braid_Int

braid_defs.h, 87
braid_Int_Max

braid_defs.h, 87
braid_Int_Min

braid_defs.h, 87
braid_MPI_INT

braid_defs.h, 87
braid_MPI_REAL

braid_defs.h, 87
braid_PrintStats

General Interface routines, 44
braid_PtFcnAccess

User-written routines, 37
braid_PtFcnBufPack

User-written routines, 38
braid_PtFcnBufSize

User-written routines, 38
braid_PtFcnBufUnpack

User-written routines, 38
braid_PtFcnClone

User-written routines, 38
braid_PtFcnFree

User-written routines, 38
braid_PtFcnInit

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

96 INDEX

User-written routines, 38
braid_PtFcnResidual

User-written routines, 38
braid_PtFcnSClone

User-written routines, 38
braid_PtFcnSCoarsen

User-written routines, 38
braid_PtFcnSFree

User-written routines, 39
braid_PtFcnSInit

User-written routines, 39
braid_PtFcnSRefine

User-written routines, 39
braid_PtFcnSpatialNorm

User-written routines, 39
braid_PtFcnStep

User-written routines, 39
braid_PtFcnSum

User-written routines, 39
braid_PtFcnTimeGrid

User-written routines, 39
braid_Real

braid_defs.h, 87
braid_SetAbsTol

General Interface routines, 44
braid_SetAccessLevel

General Interface routines, 44
braid_SetCFactor

General Interface routines, 44
braid_SetDefaultPrintFile

General Interface routines, 45
braid_SetFMG

General Interface routines, 45
braid_SetFullRNormRes

General Interface routines, 45
braid_SetMaxIter

General Interface routines, 45
braid_SetMaxLevels

General Interface routines, 45
braid_SetMaxRefinements

General Interface routines, 45
braid_SetMinCoarse

General Interface routines, 46
braid_SetNFMG

General Interface routines, 46
braid_SetNFMGVcyc

General Interface routines, 46
braid_SetNRelax

General Interface routines, 46
braid_SetPrintFile

General Interface routines, 46
braid_SetPrintLevel

General Interface routines, 46
braid_SetRefine

General Interface routines, 47
braid_SetRelTol

General Interface routines, 47
braid_SetResidual

General Interface routines, 47
braid_SetSeqSoln

General Interface routines, 47
braid_SetShell

General Interface routines, 48
braid_SetSkip

General Interface routines, 48
braid_SetSpatialCoarsen

General Interface routines, 48
braid_SetSpatialRefine

General Interface routines, 48
braid_SetStorage

General Interface routines, 48
braid_SetTPointsCutoff

General Interface routines, 49
braid_SetTemporalNorm

General Interface routines, 48
braid_SetTimeGrid

General Interface routines, 49
braid_SplitCommworld

General Interface routines, 49
braid_Status

XBraid status structures, 50
braid_StatusGetCTprior

XBraid status routines, 52
braid_StatusGetCTstop

XBraid status routines, 52
braid_StatusGetCallingFunction

XBraid status routines, 51
braid_StatusGetDone

XBraid status routines, 52
braid_StatusGetFTprior

XBraid status routines, 52
braid_StatusGetFTstop

XBraid status routines, 52
braid_StatusGetIter

XBraid status routines, 52
braid_StatusGetLevel

XBraid status routines, 53
braid_StatusGetMessageType

XBraid status routines, 53
braid_StatusGetNRefine

XBraid status routines, 53
braid_StatusGetNTPoints

XBraid status routines, 53
braid_StatusGetOldFineTolx

XBraid status routines, 53
braid_StatusGetRNorms

XBraid status routines, 54
braid_StatusGetResidual

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

INDEX 97

XBraid status routines, 53
braid_StatusGetT

XBraid status routines, 54
braid_StatusGetTILD

XBraid status routines, 54
braid_StatusGetTIndex

XBraid status routines, 54
braid_StatusGetTol

XBraid status routines, 54
braid_StatusGetTpriorTstop

XBraid status routines, 55
braid_StatusGetTstartTstop

XBraid status routines, 55
braid_StatusGetTstop

XBraid status routines, 55
braid_StatusGetWrapperTest

XBraid status routines, 55
braid_StatusSetOldFineTolx

XBraid status routines, 55
braid_StatusSetRFactor

XBraid status routines, 57
braid_StatusSetRSpace

XBraid status routines, 57
braid_StatusSetSize

XBraid status routines, 57
braid_StatusSetTightFineTolx

XBraid status routines, 57
braid_StepStatus

XBraid status structures, 50
braid_StepStatusGetIter

Inherited XBraid status routines, 59
braid_StepStatusGetLevel

Inherited XBraid status routines, 59
braid_StepStatusGetNRefine

Inherited XBraid status routines, 59
braid_StepStatusGetNTPoints

Inherited XBraid status routines, 59
braid_StepStatusGetOldFineTolx

Inherited XBraid status routines, 60
braid_StepStatusGetRNorms

Inherited XBraid status routines, 60
braid_StepStatusGetT

Inherited XBraid status routines, 60
braid_StepStatusGetTIndex

Inherited XBraid status routines, 60
braid_StepStatusGetTol

Inherited XBraid status routines, 60
braid_StepStatusGetTstartTstop

Inherited XBraid status routines, 60
braid_StepStatusGetTstop

Inherited XBraid status routines, 60
braid_StepStatusSetOldFineTolx

Inherited XBraid status routines, 60
braid_StepStatusSetRFactor

Inherited XBraid status routines, 60
braid_StepStatusSetRSpace

Inherited XBraid status routines, 60
braid_StepStatusSetTightFineTolx

Inherited XBraid status routines, 60
braid_TestAll

XBraid test routines, 62
braid_TestBuf

XBraid test routines, 63
braid_TestClone

XBraid test routines, 63
braid_TestCoarsenRefine

XBraid test routines, 64
braid_TestInitAccess

XBraid test routines, 64
braid_TestResidual

XBraid test routines, 65
braid_TestSpatialNorm

XBraid test routines, 65
braid_TestSum

XBraid test routines, 66
braid_Vector

User-written routines, 39
braid_defs.h, 86

_braid_CTAlloc, 87
_braid_Error, 87
_braid_ErrorHandler, 88
_braid_ErrorInArg, 87
_braid_TAlloc, 87
_braid_TFree, 87
_braid_TReAlloc, 87
_braid_error_flag, 88
_braid_max, 87
_braid_min, 87
braid_Int, 87
braid_Int_Max, 87
braid_Int_Min, 87
braid_MPI_INT, 87
braid_MPI_REAL, 87
braid_Real, 87
braid_isnan, 87

braid_isnan
braid_defs.h, 87

braid_status.h, 88
braid_test.h, 90
buffer

_braid_CommHandle, 67
bufpack

_braid_Core, 69
bufsize

_braid_Core, 69
bufunpack

_braid_Core, 70

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

98 INDEX

c_tprior
_braid_Core, 70

c_tstop
_braid_Core, 70

calling_function
_braid_Core, 70

cfactor
_braid_Grid, 76

cfactors
_braid_Core, 70

cfdefault
_braid_Core, 70

clone
_braid_Core, 70

clower
_braid_Grid, 76

comm
_braid_Core, 70

comm_world
_braid_Core, 70

cupper
_braid_Grid, 76

done
_braid_Core, 70

Error Codes, 36
braid_ERROR_ARG, 36
braid_ERROR_GENERIC, 36
braid_ERROR_MEMORY, 36
braid_INVALID_RNORM, 36

f_tprior
_braid_Core, 70

f_tstop
_braid_Core, 70

fa
_braid_Grid, 76

fa_alloc
_braid_Grid, 76

fmg
_braid_Core, 70

Fortran 90 interface options, 34
braid_FMANGLE, 35
braid_Fortran_Residual, 35
braid_Fortran_SpatialCoarsen, 35
braid_Fortran_TimeGrid, 35

free
_braid_Core, 70

full_rnorm0
_braid_Core, 70

full_rnorm_res
_braid_Core, 71

full_rnorms
_braid_Core, 71

General Interface routines, 41
braid_Core, 42
braid_Destroy, 42
braid_Drive, 42
braid_GetNLevels, 42
braid_GetNumIter, 42
braid_GetRNorms, 42
braid_GetSpatialAccuracy, 43
braid_Init, 43
braid_PrintStats, 44
braid_SetAbsTol, 44
braid_SetAccessLevel, 44
braid_SetCFactor, 44
braid_SetDefaultPrintFile, 45
braid_SetFMG, 45
braid_SetFullRNormRes, 45
braid_SetMaxIter, 45
braid_SetMaxLevels, 45
braid_SetMaxRefinements, 45
braid_SetMinCoarse, 46
braid_SetNFMG, 46
braid_SetNFMGVcyc, 46
braid_SetNRelax, 46
braid_SetPrintFile, 46
braid_SetPrintLevel, 46
braid_SetRefine, 47
braid_SetRelTol, 47
braid_SetResidual, 47
braid_SetSeqSoln, 47
braid_SetShell, 48
braid_SetSkip, 48
braid_SetSpatialCoarsen, 48
braid_SetSpatialRefine, 48
braid_SetStorage, 48
braid_SetTPointsCutoff, 49
braid_SetTemporalNorm, 48
braid_SetTimeGrid, 49
braid_SplitCommworld, 49

globaltime
_braid_Core, 71

grids
_braid_Core, 71

gupper
_braid_Core, 71
_braid_Grid, 76

idx
_braid_Core, 71

ilower
_braid_Grid, 76

Inherited XBraid status routines, 58
braid_AccessStatusGetCallingFunction, 59
braid_AccessStatusGetDone, 59
braid_AccessStatusGetIter, 59

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

INDEX 99

braid_AccessStatusGetLevel, 59
braid_AccessStatusGetNRefine, 59
braid_AccessStatusGetNTPoints, 59
braid_AccessStatusGetResidual, 59
braid_AccessStatusGetT, 59
braid_AccessStatusGetTILD, 59
braid_AccessStatusGetTIndex, 59
braid_AccessStatusGetWrapperTest, 59
braid_BufferStatusGetMessageType, 59
braid_BufferStatusSetSize, 59
braid_CoarsenRefStatusGetCTprior, 59
braid_CoarsenRefStatusGetCTstop, 59
braid_CoarsenRefStatusGetFTprior, 59
braid_CoarsenRefStatusGetFTstop, 59
braid_CoarsenRefStatusGetIter, 59
braid_CoarsenRefStatusGetLevel, 59
braid_CoarsenRefStatusGetNRefine, 59
braid_CoarsenRefStatusGetNTPoints, 59
braid_CoarsenRefStatusGetT, 59
braid_CoarsenRefStatusGetTIndex, 59
braid_CoarsenRefStatusGetTpriorTstop, 59
braid_StepStatusGetIter, 59
braid_StepStatusGetLevel, 59
braid_StepStatusGetNRefine, 59
braid_StepStatusGetNTPoints, 59
braid_StepStatusGetOldFineTolx, 60
braid_StepStatusGetRNorms, 60
braid_StepStatusGetT, 60
braid_StepStatusGetTIndex, 60
braid_StepStatusGetTol, 60
braid_StepStatusGetTstartTstop, 60
braid_StepStatusGetTstop, 60
braid_StepStatusSetOldFineTolx, 60
braid_StepStatusSetRFactor, 60
braid_StepStatusSetRSpace, 60
braid_StepStatusSetTightFineTolx, 60

init
_braid_Core, 71

iupper
_braid_Grid, 76

level
_braid_Core, 71
_braid_Grid, 76

localtime
_braid_Core, 71

max_iter
_braid_Core, 71

max_levels
_braid_Core, 71

max_refinements
_braid_Core, 71

messagetype

_braid_Core, 71
min_coarse

_braid_Core, 71
myid

_braid_Core, 72
myid_world

_braid_Core, 72

ncpoints
_braid_Grid, 76

nfmg
_braid_Core, 72

nfmg_Vcyc
_braid_Core, 72

niter
_braid_Core, 72

nlevels
_braid_Core, 72

nrdefault
_braid_Core, 72

nrefine
_braid_Core, 72

nrels
_braid_Core, 72

ntime
_braid_Core, 72

num_requests
_braid_CommHandle, 67

nupoints
_braid_Grid, 76

old_fine_tolx
_braid_Core, 72

print_level
_braid_Core, 72

r_space
_braid_Core, 72

recv_handle
_braid_Grid, 76

recv_index
_braid_Grid, 76

refine
_braid_Core, 72

request_type
_braid_CommHandle, 67

requests
_braid_CommHandle, 67

residual
_braid_Core, 73

rfactor
_braid_Core, 73

rfactors
_braid_Core, 73

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

100 INDEX

rnorm
_braid_Core, 73

rnorm0
_braid_Core, 73

rnorms
_braid_Core, 73

rstopped
_braid_Core, 73

rtol
_braid_Core, 73

sclone
_braid_Core, 73

scoarsen
_braid_Core, 73

send_handle
_braid_Grid, 76

send_index
_braid_Grid, 76

seq_soln
_braid_Core, 73

sfree
_braid_Core, 73

sinit
_braid_Core, 73

size_buffer
_braid_Core, 73

skip
_braid_Core, 74

spatialnorm
_braid_Core, 74

srefine
_braid_Core, 74

status
_braid_CommHandle, 67

step
_braid_Core, 74

storage
_braid_Core, 74

sum
_braid_Core, 74

t
_braid_Core, 74

ta
_braid_Grid, 77

ta_alloc
_braid_Grid, 77

tgrid
_braid_Core, 74

tight_fine_tolx
_braid_Core, 74

tnext
_braid_Core, 74

tnorm
_braid_Core, 74

tnorm_a
_braid_Core, 74

tol
_braid_Core, 74

tpoints_cutoff
_braid_Core, 74

tstart
_braid_Core, 75

tstop
_braid_Core, 75

ua
_braid_Grid, 77

ua_alloc
_braid_Grid, 77

User interface routines, 40
User-written routines, 37

braid_App, 37
braid_PtFcnAccess, 37
braid_PtFcnBufPack, 38
braid_PtFcnBufSize, 38
braid_PtFcnBufUnpack, 38
braid_PtFcnClone, 38
braid_PtFcnFree, 38
braid_PtFcnInit, 38
braid_PtFcnResidual, 38
braid_PtFcnSClone, 38
braid_PtFcnSCoarsen, 38
braid_PtFcnSFree, 39
braid_PtFcnSInit, 39
braid_PtFcnSRefine, 39
braid_PtFcnSpatialNorm, 39
braid_PtFcnStep, 39
braid_PtFcnSum, 39
braid_PtFcnTimeGrid, 39
braid_Vector, 39

useshell
_braid_Core, 75

va
_braid_Grid, 77

va_alloc
_braid_Grid, 77

vector_ptr
_braid_CommHandle, 67

wrapper_test
_braid_Core, 75

XBraid status macros, 61
braid_ASCaller_FAccess, 61
braid_ASCaller_FInterp, 61
braid_ASCaller_FRefine, 61

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

INDEX 101

braid_ASCaller_FRestrict, 61
XBraid status routines, 51

braid_StatusGetCTprior, 52
braid_StatusGetCTstop, 52
braid_StatusGetCallingFunction, 51
braid_StatusGetDone, 52
braid_StatusGetFTprior, 52
braid_StatusGetFTstop, 52
braid_StatusGetIter, 52
braid_StatusGetLevel, 53
braid_StatusGetMessageType, 53
braid_StatusGetNRefine, 53
braid_StatusGetNTPoints, 53
braid_StatusGetOldFineTolx, 53
braid_StatusGetRNorms, 54
braid_StatusGetResidual, 53
braid_StatusGetT, 54
braid_StatusGetTILD, 54
braid_StatusGetTIndex, 54
braid_StatusGetTol, 54
braid_StatusGetTpriorTstop, 55
braid_StatusGetTstartTstop, 55
braid_StatusGetTstop, 55
braid_StatusGetWrapperTest, 55
braid_StatusSetOldFineTolx, 55
braid_StatusSetRFactor, 57
braid_StatusSetRSpace, 57
braid_StatusSetSize, 57
braid_StatusSetTightFineTolx, 57

XBraid status structures, 50
braid_AccessStatus, 50
braid_BufferStatus, 50
braid_CoarsenRefStatus, 50
braid_Status, 50
braid_StepStatus, 50

XBraid test routines, 62
braid_TestAll, 62
braid_TestBuf, 63
braid_TestClone, 63
braid_TestCoarsenRefine, 64
braid_TestInitAccess, 64
braid_TestResidual, 65
braid_TestSpatialNorm, 65
braid_TestSum, 66

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

	Abstract
	Introduction
	Meaning of the name
	Advice to users
	Overview of the XBraid Algorithm
	Two-Grid Algorithm
	Summary

	Overview of the XBraid Code
	Parallel decomposition and memory
	Cycling and relaxation strategies
	Overlapping communication and computation
	Configuring the XBraid Hierarchy
	Halting tolerance
	Debugging XBraid

	Citing XBraid
	Summary

	Examples
	The Simplest Example
	Some Advanced Features
	Simplest example expanded
	One-Dimensional Heat Equation
	Two-Dimensional Heat Equation
	Scaling Study with this Example

	Building XBraid
	Examples: compiling and running
	Coding Style
	Using Doxygen
	Regression Testing
	Drivers: compiling and running
	Module Index
	Modules

	Data Structure Index
	Data Structures

	File Index
	File List

	Module Documentation
	Fortran 90 interface options
	Detailed Description
	Macro Definition Documentation

	Error Codes
	Detailed Description
	Macro Definition Documentation

	User-written routines
	Detailed Description
	Typedef Documentation

	User interface routines
	Detailed Description

	General Interface routines
	Detailed Description
	Typedef Documentation
	Function Documentation

	XBraid status structures
	Detailed Description
	Typedef Documentation

	XBraid status routines
	Detailed Description
	Function Documentation

	Inherited XBraid status routines
	Detailed Description
	Function Documentation

	XBraid status macros
	Detailed Description
	Macro Definition Documentation

	XBraid test routines
	Detailed Description
	Function Documentation

	Data Structure Documentation
	_braid_CommHandle Struct Reference
	Detailed Description
	Field Documentation

	_braid_Core Struct Reference
	Detailed Description
	Field Documentation

	_braid_Grid Struct Reference
	Detailed Description
	Field Documentation

	File Documentation
	_braid.h File Reference
	Detailed Description
	Macro Definition Documentation
	Function Documentation
	Variable Documentation

	braid.h File Reference
	Detailed Description

	braid_defs.h File Reference
	Detailed Description
	Macro Definition Documentation
	Typedef Documentation
	Function Documentation
	Variable Documentation

	braid_status.h File Reference
	Detailed Description
	Macro Definition Documentation

	braid_test.h File Reference
	Detailed Description

	Index

